Select your language

Suggested languages for you:
Log In Anmelden
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Die All-in-one Lernapp:

  • Karteikarten
  • NotizenNotes
  • ErklärungenExplanations
  • Lernpläne
  • Übungen
App nutzen

Vektoren addieren

Save Speichern
Print Drucken
Edit Bearbeiten
Melde dich an und nutze alle Funktionen. Jetzt anmelden
Vektoren addieren

Vektoren können sowohl subtrahiert als auch addiert werden. In diesem Artikel geht es um die Addition von Vektoren. Das Vorgehen und was die Voraussetzungen dafür sind, wird dir im folgenden Schritt für Schritt erklärt.

Vektoren addieren Addition StudySmarter

Vektoren addieren Voraussetzungen

Grundsätzlich hast du zwei Möglichkeiten bei der Vektoraddition: grafisch oder rechnerisch. Wichtig bei der Vektoraddition ist, dass die zu addierenden Vektoren die gleiche Struktur und die gleiche Dimension haben. Aber was bedeutet das eigentlich?

Vektoren addieren Dimension StudySmarter

Vektoren können in zwei unterschiedliche Arten dargestellt werden: als Zeilenvektor oder als Spaltenvektor.

Ein Vektor ist als Zeilenvektor angegeben, wenn alle Koordinaten horizontal nebeneinander stehen.

Vektoren addieren Zeilenvektor StudySmarter

Außerdem gibt es noch Spaltenvektoren. Bei Spaltenvektoren liegen alle Koordinaten übereinander.

Vektoren addieren Spaltenvektor StudySmarter

Die Dimension eines Vektors ist abhängig von der Anzahl der Koordinaten. Während ein Vektor mit zwei Koordinaten im zwei-Dimensionalen liegt, liegt ein Vektor mit drei Koordinaten im drei-Dimensionalen.

Vektoren addieren Dimensionen umwandeln StudySmarter

Zur Wiederholung: Die Komponenten eines Vektors sind seine x-, y- und gegebenenfalls z-Koordinaten.

Vektoren addieren – Beispiele

Hier ein paar Beispielaufgaben zum Addieren von Vektoren:

Aufgabe 1

Entscheide, ob man diese Vektoren in ihrer angegebenen Form addieren kann.

1.

2.

3.

4.

Lösung

1.

In diesem Fall sind beide Vektoren Zeilenvektoren und haben 2 Koordinaten. Aufgrund dessen haben sie die gleiche Struktur und die gleiche Dimension, was bedeutet, dass eine Addition möglich ist.

2.

Hier sind beide Vektoren Zeilenvektoren, wodurch die erste Anforderung, die gleiche Struktur, schon erfüllt ist. Der Vektor ist jedoch zwei-dimensional, während der Vektor sich im drei-dimensionalen befindet. Damit ist die zweite Anforderung, die gleiche Dimension, nicht erfüllt. Die Vektoren können demnach nicht addiert werden.

3.

In diesem Fall haben beide Vektoren drei Komponenten, befinden sich also im drei-Dimensionalen und sind demnach in der gleichen Dimension. Die Art der Vektoren ist jedoch eine andere, da der Vektor ein Spaltenvektor und der Vektor ein Zeilenvektor ist. Diese beiden Vektoren lassen sich also nicht addieren.

4.

Hier sind beide Vektoren Spaltenvektoren und haben drei Komponenten. Das bedeutet, die Struktur und die Dimension sind gleich: Die Vektoren können addiert werden.

Falls du nach diesem Prinzip merkst, dass deine Vektoren nicht die gleiche Struktur haben, kannst du sie so umwandeln, dass sie den Anforderungen entsprechen.

Umwandeln der Schreibweise der Vektoren

Einen Spaltenvektor in einen Zeilenvektor umzuwandeln oder andersherum ist einfach. Besonders, wenn die Vektoren noch nicht mit Zahlen, sondern allgemein aufgeschrieben werden, kannst du auf einen Blick erkennen, dass du den Vektor nur anders aufschreiben musst.

Also anstatt von links nach rechts, von oben nach unten. Oder anstatt von oben nach unten, von links nach rechts.

Die Umwandlung von Zeilen- in Spaltenvektor sieht so aus:

Vektoren addieren Arten umwandeln StudySmarter

Das Gleiche gilt auch für zwei-dimensionale Vektoren:

Vektoren addieren Arten umwandeln StudySmarter

Vektoren addieren Grafisch

Wie oben schon kurz erwähnt, hast du zwei verschiedene Möglichkeiten, Vektoren zu addieren: grafisch oder rechnerisch. Die grafische Möglichkeit ist zwar etwas zeitaufwändiger, jedoch kannst du dir das Szenario, besonders bei komplizierten Aufgaben mit Kontext, besser vorstellen. Wenn es aber mal schnell gehen muss und du keine visuelle Hilfe brauchst, ist der rechnerische Ansatz genau richtig.

Vektoren grafisch addieren Zeichnung

Die erste Variante, um zwei Vektoren zu addieren, ist grafisch. Hier zeichnest du die beiden Vektoren und verbindest dann den Fuß des einen mit der Spitze des anderen Vektors. So entsteht ein neuer Vektor.

Die Spitze eines Vektors ist das Ende des Vektors, während der Fuß, dem Beginn des Vektors entspricht.

Das sieht dann folgendermaßen aus:

Stelle die Addition zweier Vektoren grafisch dar.

Grafische Darstellung
Erklärung

Vektoren addieren Vektor a StudySmarter Abbildung 1: Vektor a

Als Erstes zeichnest du dir den ersten Vektor, also den ersten Summanden, in ein Koordinatensystem ein.In diesem Fall zeichnest du also den Vektor .

Zur Erinnerung: Bei einer Addition werden die beiden zu addierenden Zahlen Summanden genannt. Das Ergebnis ist dann die Summe.

Es gilt also:

1. Summand + 2. Summand = Summe

Vektoren addieren Vektor b StudySmarterAbbildung 2: Vektor b

Danach zeichnest du den zweiten Vektor, den anderen Summanden, in das Koordinatensystem ein. In diesem Fall den Vektor .Dabei solltest du darauf achten, dass du dort startest, wo der erste Vektor endet.

Es ist egal, mit welchem Vektor du beginnst. Du kannst auch den Fuß von , an die Spitze des Vektors legen, wenn du zuerst einzeichnest. Das Ergebnis bleibt gleich.

Vektoren addieren Vektoraddition StudySmarterAbbildung 3: Vektoraddition

Im nächsten Schritt kannst du den Fuß von , also des ersten Vektors, mit der Spitze von (also des zweiten Vektors) verbinden. Diese Verbindung ist die Summe und somit der "neue" Vektor.

Dieses Vorgehen funktioniert im drei-Dimensionalen natürlich genauso.

Kommutativgesetz

Wie oben kurz angesprochen, ist es aufgrund des Kommutativgesetzes egal, in welcher Reihenfolge du die zu addierenden Vektoren schreibst. Man sagt auch: Die Addition zweier Vektoren ist kommutativ.

Vektoren addieren Kommutativgesetz StudySmarter

Du kannst auch den Fuß von an die Spitze von legen, wenn du zuerst einzeichnest. Das Ergebnis bleibt gleich (Kommutativgesetz). Das Ergebnis dieses Vorgangs ist wieder ein Vektor, der Vektor .

Vektoren rechnerisch addieren Betrag

Die zweite Variante Vektoren zu addieren ist rechnerisch. Diese Variante ist um einiges einfacher und schneller als die Variante des Zeichnens. Hier musst du jeweils die Komponenten der beiden Vektoren miteinander addieren, um die Summe der beiden zu erhalten.

Addition zweier Vektoren :

Vektoren addieren Formel für die Vektorenaddition StudySmarter

beziehungsweise im zwei-Dimensionalen

Vektoren addieren Formel zur Vektoraddition StudySmarter

Folgendermaßen sieht dieses Vorgehen beispielsweise aus:

Aufgabe 2

1.

Berechne die Summe der Vektoren .

Lösung

1.

Als Erstes solltest du diese Aufgabenstellung in eine Rechnung umwandeln. Du schreibst die zwei Vektoren konkret als Summe auf. Die Reihenfolge ist dabei egal. In diesem Beispiel ist der 1. Summanden und der 2. Summanden.

Als Nächstes fasst du die zwei Vektoren zu einem Vektor zusammen.

Zum Schluss kannst du jetzt die Komponenten einzeln ausrechnen.

Die Summe der Vektoren beträgt also .

Vektoren addieren Aufgaben zum Üben

In den folgenden Aufgaben kannst du dein Wissen testen!

Aufgabe 3

  1. Berechne die Summe der beiden Vektoren .
  2. Berechne die Summe der beiden Vektoren .

Lösung

1.

Als Erstes musst du dir überlegen, ob diese Aufgabe überhaupt berechnet werden kann. Beide Vektoren sind Zeilenvektoren und befinden sich im zwei-Dimensionalen. Das bedeutet, man kann direkt mit dem Rechnen anfangen, da sie die gleiche Struktur und die gleiche Dimension haben. Als Nächstes setzt du die Werte in die Formel von oben ein:

Jetzt kannst du die Vektoren zu einem Vektor zusammen fassen.

Zum Schluss kannst du das Ergebnis ausrechnen.

Die Summe der Vektoren beträgt .

2.

Als Erstes musst du dir wieder überlegen, ob die Aufgabe so zu lösen ist. Der erste Vektor ist ein Spaltenvektor, während der zweite Vektor ein Zeilenvektor ist. Sie haben also nicht die gleiche Struktur. Bring daher die Art der Vektoren auf einen Zeilenvektor. Dafür musst du den zweiten Vektor anstatt von links nach rechts von oben nach unten aufschreiben.

Jetzt sind beide Vektoren Spaltenvektoren, jedoch hat Vektor drei Komponenten, während Vektor nur zwei Komponenten hat. Sie befinden sich also in unterschiedlichen Dimensionen. Da die Dimension eines Vektors nicht geändert werden kann, ist diese Aufgabe nicht lösbar und somit gibt es kein Ergebnis.

Addition von Vektoren Das Wichtigste

  • Vektoren müssen gleicher Art und Dimension sein, um addiert werden zu können.

  • Bei Spaltenvektoren sind die Koordinaten von oben nach unten notiert sind.

  • Bei Zeilenvektoren sind die Koordinaten von links nach rechts notiert.

  • Zwei-Dimensionale Vektoren haben zwei Koordinaten.

  • Drei-Dimensionale Vektoren haben drei Koordinaten.

  • Zeichnerisch wird der Fuß des einen Summanden mit der Spitze des anderen Summanden verbunden.

  • Rechnerisch werden die Vektoren zu einem Vektor zusammengefasst und die einzelnen Komponenten miteinander subtrahiert.

  • Es gilt: Vektoren addieren Formel zur Vektoraddition StudySmarter

  • Die Reihenfolge der Vektoren ist egal (kommutativ).

Häufig gestellte Fragen zum Thema Vektoren addieren

Du könntest diese Frage auch anders formulieren: Kann man Schubkarren mit Kokosnüssen addieren? Das geht leider nicht. Aber man kann Schubkarren mit Schubkarren und Kokosnüsse mit Kokosnüsse addieren. Also man kann nur Vektoren mit Vektoren addieren und Zahlen mit Zahlen, denn Zahlen sind keine Vektoren. So wie Schubkarren eben keine Kokosnüsse sind.

Eine Vektoraddition ist eine Addition von zwei Vektoren. Das bedeutet, zwei Punkte mit Richtung werden plus genommen.

Das passiert, indem der Fuß des ersten Vektors mit der Spitze des zweiten Vektors verbunden wird. Oder du kannst auch die einzelnen Komponenten der Vektoren addieren.

Als Erstes zeichnest du den einen Vektor. Dann setzt du den zweiten Vektor an die Spitze des ersten Vektors. Um den Ergebnisvektor zu erhalten, musst du den Fuß des ersten Vektors mit der Spitze des zweiten Vektors verbinden.

Vektoren kann man nur addieren, wenn sie die gleiche Art und die gleiche Dimension haben. Das bedeutet, beide Vektoren müssen entweder Spalten- oder Zeilenvektoren ein. Außerdem müssen sie die gleiche Anzahl an Komponenten haben, also entweder 2 oder 3.

Mehr zum Thema Vektoren addieren
60%

der Nutzer schaffen das Vektoren addieren Quiz nicht! Kannst du es schaffen?

Quiz starten

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Gerade angemeldet?

Ja
Nein, aber ich werde es gleich tun

Melde dich an für Notizen & Bearbeitung. 100% for free.