Select your language

Suggested languages for you:
Log In Anmelden
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Die All-in-one Lernapp:

  • Karteikarten
  • NotizenNotes
  • ErklärungenExplanations
  • Lernpläne
  • Übungen
App nutzen

Umfang Kreisring

Save Speichern
Print Drucken
Edit Bearbeiten
Melde dich an und nutze alle Funktionen. Jetzt anmelden
Umfang Kreisring

Stell dir vor, du machst mit einem deiner Freunde ein Wettrennen auf dem Sportplatz eurer Schule. Der Sportbahn ist rund, mit einer kreisförmigen Grasfläche in der Mitte.

Umfang Kreisring Sportbahn StudySmarter

Dein Freund läuft auf der inneren Linie, während du ganz außen läufst. Wie viel mehr Strecke musst du laufen? Diese Antwort kann man mit dem Umfang eines Kreisrings berechnen. Und genau das wirst du in diesem Artikel lernen.

Umfang Kreisring – Erklärung Grundlagenwissen

Bevor du so richtig mit der Berechnung des Umfangs eines Kreisrings durchstarten kannst, wiederholen wir erst noch einmal, was ein Kreisring überhaupt ist und was man sich unter dessen Umfang vorstellen kann.

Kreisring – Definition

Das Wort Kreisring hast du vielleicht noch überhaupt nicht gehört. Der Kreisring ist keine Form, die einem oft im Alltagsleben unterkommt und doch kennst du ein paar Dinge, die die Form eines Kreisrings haben: Ein Verkehrskreisel, ein Donut oder ein dicker Gummi. Alle haben die Form eines Kreisrings.

Ein Kreisring ist die Fläche, welche zwischen zwei unterschiedlich großen Kreisen mit dem selben Mittelpunkt liegt. Aufgrund dessen hat ein Kreisring zwei verschiedene Radien: rk, der Radius des kleinen Innenkreises und rg, der Radius des größeren Außenkreises. Beide dieser Radien – und damit beide Kreise – haben den gleichen Mittelpunkt M.

In der Mathematik zeichnet man einen Kreisring natürlich nicht wie einen Donut. In der Mathematik kann ein Kreisring beispielsweise so aussehen:

Umfang Kreisring Kreisring Definition StudySmarterAbbildung 1: Kreisring

Umfang – Definition

Stell dir vor, es wird ein Verkehrskreisel mit einer mit Blumen bepflanzten Insel in der Mitte gebaut. Der Asphalt ist schon fertig und es fehlt nur noch ein Bordstein an beiden Seiten der Fahrbahn. Wie viele Steine müssen gekauft werden, dass es für einen Bordstein an beiden Seiten der Fahrbahn reicht? Je nach Größe des Kreisels ändert sich auch die Menge an Steinen, die benötigt werden. Der Umfang gibt dabei genau an, wie lang die Strecke an beiden Seiten der Fahrbahn ist.

Der Umfang eines Kreisrings ist also die Länge der Strecke, die den Kreisring außen begrenzt, addiert mit der Länge der Strecke, die den Kreisring innen begrenzt. Er ist abhängig vom Radius r beziehungsweise dem Durchmesser d.

Der Umfang wird mit dem Großbuchstaben U abgekürzt und normalerweise in mm (Millimeter), cm (Zentimeter), m (Meter) oder km (Kilometer) angegeben.

Umfang eines Kreisrings – Formel und Herleitung

Um jetzt die Formel für den Umfang eines Kreisrings zu erhalten, brauchst du grundsätzlich nur zwei Dinge:

  1. Die Formel für den Umfang eines Kreises
  2. Die Definition des Kreisrings

Die Formel für den Umfang U eines Kreises lautet:

U = 2 · π · r

Wenn du mehr über den Umfang eines Kreises erfahren willst, dann lies dir doch unseren Artikel zu dem Thema durch.

Wenn du jetzt überlegst, besagt die Definition eines Kreisrings, dass dieser aus einem großen Kreis besteht, der von einem kleinen, inneren Kreis begrenzt wird. Genauso kommst du auf die Formel:

Du berechnest den Umfang des großen Kreises und addierst dann den Umfang des kleinen Kreises dazu. Und schon hast du die Summe der Umfänge des großen und des kleinen Kreises, also den Kreisring.

Für den Umfang U eines Kreisrings gilt:

U = Ugroß + UkleinU = 2 · π · rg + 2 · π · rkU = 2 · π · (rg + rk)

Mit der Relation zwischen Radius und Durchmesser kannst du die Formel jetzt auch noch mit dem Durchmesser angeben. Es gilt dabei, dass der doppelte Radius dem Durchmesser entspricht.

2 · r = d r = d2

Wenn du dir das bildlich vorstellst, dann wird diese Aussage auf den ersten Blick deutlich.

Umfang Kreisring Beziehung Radius und Durchmesser StudySmarter

Abbildung 2: Beziehung zwischen Radius und Durchmesser

Dann sieht die Formel so aus:

Für den Flächeninhalt eines Kreisrings gilt:

U = 2 · π · dg2+ 2 · π · dk2U = 2 · π · dg2 + dk2

Umfang eines Kreisrings berechnen

In diesem Kapitel kannst du deine oben gelernten Erkenntnisse testen und tatsächlich den Umfang eines Kreisrings berechnen. Dazu findest du hier für jede Möglichkeit eine Übungsaufgabe.

Umfang eines Kreisrings mit dem Radius berechnen

In diesem Beispiel kannst du den Umfang eines Kreisrings mit dem Radius und der dazu passenden Formel berechnen:

Aufgabe 1

Berechne den Umfang U eines Kreisrings mit den Radien rg = 5 cm und rk = 2 cm.

Lösung:

Schreibe als Erstes die Formel auf. In diesen Fall ist der Radius gegeben, daher wählt man:

U = 2π · rg + 2π · rk

Setze als Nächstes die Werte für r, in diesem Fall 5 cm und 2 cm, in die Formel ein:

U = 2π · 5 cm + 2π · 2 cm

Zuletzt berechnest du das Ergebnis mit dem Taschenrechner:

U = π · 10 cm + π · 4 cmU = π · 14 cm 43,98 cm

Auf den meisten Taschenrechnern gibt es eine Taste, um Pi einzusetzen. Hast du die nicht, kannst du bei der Berechnung des Flächeninhalts auch ausnahmsweise einfach den gerundeten Wert von 3,41 verwenden.

Der Kreisring hat also einen Umfang von rund 43,98 cm.

Zusammengefasst besteht diese Berechnungsart also aus drei Schritten:

  • Formel aufschreiben,
  • Werte einsetzen,
  • Ergebnis ausrechnen.

Umfang eines Kreisrings mit dem Durchmesser berechnen

In diesem Beispiel wird der Umfang eines Kreisrings mit dem Durchmesser und der dazu passenden Formel berechnet:

Aufgabe 2

Berechne den Umfang U eines Kreisrings mit den Durchmessern dg = 4 cm und dk = 1 cm.

Lösung

Als Erstes wird die passende Formel ausgesucht. Da der Durchmesser gegeben ist, wählt man folgende Formel:

U = 2π · dg2 + 2π · dk2

Im nächsten Schritt werden die gegebenen Werte, also dg = 4 cm und dk = 1 cm, in die Formel eingesetzt:

U = 2π · 4 cm2 + 2π · 1 cm2

Zum Schluss kannst du jetzt das Ergebnis wieder mit dem Taschenrechner ausrechnen:

U = 2π · 2 cm + 2π · 0,5 cmU = π · 4 cm + π · 1 cmU = π · 5 cm 15,71 cm

Dadurch, dass π eine unendliche Zahl ist, hat auch der Flächeninhalt eines Kreisrings meistens sehr viele Nachkommastellen. Diese musst du aber nicht alle aufschreiben. Du kannst einfach auf zwei Nachkommastellen runden.

Der Umfang U beträgt gerundet 15,71 cm.

Zusammengefasst besteht auch diese Berechnungsart, genau wie bei der Berechnung mit dem Radius, aus drei Schritten:

  • Formel aufschreiben,
  • Werte einsetzen,
  • Ergebnis ausrechnen.

Umfang eines Kreisrings mit dem Flächeninhalt berechnen

Was machst du, wenn du weder die Radien r noch die Durchmesser d eines Kreisrings gegeben hast? Kann der Umfang dann auch berechnet werden? Die Antwort ist ja, wenn du die Flächeninhalte des inneren und des äußeren Kreises gegeben hast:

Aufgabe 3

Gegeben sind die Flächeninhalt Ag = 30 cm2 und Ak = 20 cm2 eines Kreisrings. Du sollst jetzt daraus den Umfang U berechnen.

Lösung

Zuerst wird die Formel für den Flächeninhalt eines Kreises aufgeschrieben:

A= π · r2

Wenn du dir nicht mehr sicher bist, was genau der Flächeninhalt eines Kreises ist und mehr Infos dazu willst, lese dir doch unseren Artikel zum Thema Flächeninhalt eines Kreises durch.

Als Nächstes stelle die Formel um, sodass der Radius r ausgerechnet werden kann:

A = π · r2 ÷πr2 = Aπ r = Aπ

Jetzt kannst du die Formel für die Berechnung des Umfangs eines Kreisrings mit dem Radius aufschreiben.

U = 2π · rg + 2π · rk

Da die Formel des Flächeninhalts oben umgestellt wurde, setze nun die umgestellte Formel in die Formel des Umfangs ein:

U = 2π · Agπ + 2π · Ak2

Als Letztes kannst du die gegebenen Werte von Ag = 30 cm2 und Ak = 20 cm2 für die Flächeninhalte A einsetzen und das Ergebnis ausrechnen:

U = 2π · 30 cm2π + 2π · 20 cm2πU 35,27 cm

Der Umfang des Kreisrings beträgt ungefähr 35,27 cm.

Zusammengefasst besteht diese Berechnungsart aus sechs Schritten:

  • Formel für den Flächeninhalt aufschreiben,
  • Formel nach r umstellen,
  • Formel für Umfang mit r aufschreiben,
  • r aus der umgestellten Formel in r der Formel des Umfangs einsetzen,
  • Werte einsetzen,
  • Ergebnis ausrechnen.

Innerer Ring und äußerer Ring

Flächeninhalt eines Kreisrings

Es kann nicht nur mithilfe des Flächeninhalts der Umfang eines Kreisrings berechnet werden, es kann auch der Flächeninhalt des Kreisrings selbst berechnet werden.

Wie du eben schon gemerkt hast, gibt es auch hier zwei verschiedene Flächeninhalte:

  1. Der Flächeninhalt des inneren, kleinen Kreises
  2. Der Flächeninhalt der äußeren, großen Kreises

Umfang Kreisring Flächeninhalt Kreisring StudySmarter

Abbildung 3: Flächeninhalt Kreisring

Um den Flächeninhalt des Kreisrings zu berechnen, musst du einfach den Flächeninhalt des großen Kreises berechnen und dann den Flächeninhalt des kleinen Kreises abziehen. Und schon hast du nur noch den Unterschied zwischen dem großen und dem kleinen Kreis, also den Kreisring.

Für den Flächeninhalt A eines Kreisrings gilt:

A = π · rg2 - π · rk2

oder

A = π · dg22 - π · dk22

Umfang eines Kreisrings – Übungsaufgaben

In den folgenden Übungsaufgaben kannst du dein Wissen testen!

Aufgabe 4

Wenn du zurück an den Bordstein denkst, der auf beiden Seiten einer Verkehrskreisel-Fahrtbahn gebaut werden soll. Der Kreisel hat einen Innendurchmesser von dk = 68 m und einen Außenradius von rg = 40 m.

Wie viele Steine werden gebraucht, um den Bordstein zu bauen, wenn ein Stein 10 cm lang ist?

Lösung

Als Erstes kannst du dir eine Zeichnung der Situation anlegen. Die 40 m sind der Außenradius, während die 68 m der Durchmesser des inneren Kreises sind. Du sollst die Länge der Bordsteine, also den Umfang des Kreisrings, berechnen.

Umfang Kreisring Aufgabe StudySmarter

Abbildung 4: Verkehrskreisel Zeichnung

Dann musst du entweder die 40 m Radius in einen Durchmesser oder die 68 m Durchmesser in einen Radius umrechnen. In diesem Fall wird alles in einen Radius umgewandelt.

Du schreibst dir also das Verhältnis zwischen dem Durchmesser und dem Radius auf, setzt die 68 m ein und berechnest das Ergebnis.

r = d2r = 68 m2r = 34 m

Als Nächstes kannst du die Formel zur Berechnung des Umfangs eines Kreisrings mit dem Radius aufschreiben. Dann kannst du die Werte einsetzen und das Ergebnis berechnen.

U = 2π · rg + 2π · rkU = 2π · 40 m + 2π · 34 mU = π · 80 m + π · 68 mU = π · 148 m 465 m

Jetzt weißt du, wie lange die Strecke ist, die mit Steinen ausgelegt werden soll. Jetzt musst du nur noch herausfinden, wie viele Steine du legen musst, um auf diese 465 m zu kommen. Um das zu berechnen, kannst du genau diesen Sachverhalt einmal mathematisch aufschreiben und dann auflösen.

0,1 m · x = 465 m ÷0,1 mx = 465 m0,1 mx = 4650

Es werden also genau 4650 Steine gebraucht, um den Bordstein zu bauen.

Aufgabe 5

Erinnerst du dich noch an die Einleitung? Du und ein Freund macht ein Wettrennen, aber er läuft auf der Innenbahn, während du auf der Außenbahn eines runden Sportfeldes läufst. Das Sportfeld ist auf einer Fläche von 12000 m². Die Grasfläche in der Mitte ist 4800 m² groß.

Wie viel mehr Weg als er musst du zurücklegen?

Lösung

Als Erstes musst du erkennen, welche Werte gesucht und welche Werte gegeben sind.

Gesucht ist der Wegunterschied zwischen dem Umfang des inneren Kreises und dem Umfang des äußeren Kreises. Gegeben ist der Flächeninhalt A des größeren Kreises und der Flächeninhalt A des kleinen Kreises.

Um das Ergebnis berechnen zu können, musst du also diesmal nicht, wie bisher, die Umfänge der beiden Kreise addieren, sondern du musst sie subtrahieren, um auf den Wegunterschied zu kommen.

U = Ug - UkU = 2π · rg - 2π · rk

Da du aber nicht den Radius r gegeben hast, sondern den Flächeninhalt A, musst du erst die Formel für den Flächeninhalt eines Kreises aufschreiben und diese nach r umstellen.

A = π · r2 ÷πr2 = Aπ r = Aπ

Diese Formel musst du jetzt in die Formel einsetzen, die du als Erstes aufgestellt hast. Dann kannst du die Werte einsetzen und das Ergebnis berechnen.

U = 2π · Agπ - 2π · AkπU = 2π · 12000 m2π - 2π · 4800 m2πU 143 m

Du musst also ungefähr 143 m mehr laufen als dein Freund.

Umfang eines Kreisrings – Das Wichtigste auf einen Blick

  • Der Umfang U eines Kreisrings ist abhängig von seinem Außenradius rg und seinem Innenradius rk bzw. seinem Außendurchmesser dg und seinem Innendurchmesser dk
  • Für den Umfang U eines Kreisrings mit dem Radius r gilt: U = 2π · rg + 2π · rk
  • Für den Umfang U eines Kreisrings mit dem Durchmesser d gilt: U = 2π · dg2 + 2π · dk2
  • Es müssen drei Schritte befolgt werden beim Rechnen mit diesen Formeln:
    • Formel aufschreiben,
    • Werte einsetzten,
    • Ergebnis ausrechnen.
  • Für einen Kreisring mit dem Umfang U und den Flächeninhalten Ag und Ak gilt: U = 2π · Agπ + 2π · Ak2
  • Für den Flächeninhalt eines Kreisrings gilt: A = π · rg2 - π · rk2

Häufig gestellte Fragen zum Thema Umfang Kreisring

Die Beziehung zwischen Radius und Durchmesser lautet:


2r = d bzw. r = d/2


Diese Formel kannst du in die Formel für den Umfang einer Figur einsetzten. Dann kannst du das Ergebnis mit dem Durchmesser berechnen.

Um den Radius aus dem Umfang zu berechnen, musst du die Formel für den Umfang U nach r umstellen.

Bei einem Kreisring musst du dich entscheiden, ob du den Radius des großen oder des kleinen Kreises berechnen willst. Der Radius, den du nicht wählst, muss gegeben sein. Die Formel für einen Kreisring kann dann beispielsweise so aussehen:


rg = (U/2 · π) - rk

Der Umfang eines Kreisrings kann berechnet werden, indem der Umfang des äußeren Kreises mit dem Umfang des inneren Kreises addiert wird. Es gilt:


U = 2π · rg + 2π · rk

Die Beziehung zwischen Radius und Durchmesser lautet:


2r = d bzw. r = d/2


Diese Formel kannst du in die Formel für den Umfang eines Kreises (U = 2 · π · r) einsetzen. Dann kannst du das Ergebnis mit dem Durchmesser berechnen.


U = 2 · π · (d/2)

Finales Umfang Kreisring Quiz

Frage

Was ist der Umfang eines Kreisrings?

Antwort anzeigen

Antwort

Der Umfang eines Kreisrings ist die Länge der Strecke um den Kreisring herum addiert mit der Länge der Strecke, die den Kreisring innen begrenzt. Er ist abhängig vom Radius r beziehungsweise dem Durchmesser d.

Frage anzeigen

Frage

In welcher Einheit wird der Umfang angegeben?

Antwort anzeigen

Antwort

Der Umfang wird normalerweise in mm (Millimeter), cm (Zentimeter), m (Meter) oder km (Kilometer) angegeben.

Frage anzeigen

Frage

Was braucht man für die Herleitung der Formel zur Berechnung des Umfangs eines Kreisrings?

Antwort anzeigen

Antwort

Man braucht:

  1. Die Formel für den Umfang eines Kreises
  2. Die Definition des Kreisrings
Frage anzeigen

Frage

Wie erhält man den Umfang eines Kreisrings? Erkläre!

Antwort anzeigen

Antwort

Du berechnest den Umfang des großen Kreises und addierst dann den Umfang des kleinen Kreises dazu. Und schon hast du die Summe der Umfänge des großen und des kleinen Kreises, also den Kreisring.

Frage anzeigen
Mehr zum Thema Umfang Kreisring
60%

der Nutzer schaffen das Umfang Kreisring Quiz nicht! Kannst du es schaffen?

Quiz starten

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Gerade angemeldet?

Ja
Nein, aber ich werde es gleich tun

Melde dich an für Notizen & Bearbeitung. 100% for free.