StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
Americas
Europe
\(\definecolor{bl}{RGB}{20, 120, 200} \definecolor{gr}{RGB}{0, 220, 180} \definecolor{r}{RGB}{250, 50, 115} \definecolor{li}{RGB}{131, 99, 226} \definecolor{ge}{RGB}{255, 205, 200}\)Dieses Thema beinhaltet unter anderem, wie Du mit Vektoren die Formel der Kugelgleichung aufstellst. Wie genau diese Formel später aussieht, hängt davon ab, ob Du die Koordinatenform oder die Parameterform verwendest. Wie Du diese Formel aufstellst und verwendest, erfährst Du in diesem Artikel. Am Ende findest Du ein paar Aufgaben, etwa um einen Mittelpunkt zu bestimmen.
Entdecke über 50 Millionen kostenlose Lernmaterialien in unserer App.
Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmelden\(\definecolor{bl}{RGB}{20, 120, 200} \definecolor{gr}{RGB}{0, 220, 180} \definecolor{r}{RGB}{250, 50, 115} \definecolor{li}{RGB}{131, 99, 226} \definecolor{ge}{RGB}{255, 205, 200}\)Dieses Thema beinhaltet unter anderem, wie Du mit Vektoren die Formel der Kugelgleichung aufstellst. Wie genau diese Formel später aussieht, hängt davon ab, ob Du die Koordinatenform oder die Parameterform verwendest. Wie Du diese Formel aufstellst und verwendest, erfährst Du in diesem Artikel. Am Ende findest Du ein paar Aufgaben, etwa um einen Mittelpunkt zu bestimmen.
In dieser Erklärung geht es viel um Vektoren im dreidimensionalen Raum und wie Du deren Beträge berechnest. Solltest Du Dir in diesen Themen noch nicht ganz sicher sein, dann schau Dir doch vorher die Erklärungen Betrag eines Vektors und Richtungsvektor an.
Eine Kugel wird in der analytischen Geometrie als eine Menge aller Punkte des Raumes beschrieben, die von einem gegebenen Mittelpunkt M denselben Abstand (Radius) \(r\) haben.
Abb. 1: Kugel im dreidimensionalem Raum
Allgemein gilt folgende Definition:
Die Definition der Kugel im dreidimensionalen Raum lautet:
\[{\color{bl}k}[{\color{r}M};{\color{gr}r}]=\{{\color{li}X}|{\color{gr}\overline{MX}}={\color{gr}r}\} \]
Dabei stehen \({\color{bl}k}\) für die Kugel, \({\color{r}M}\) für den Mittelpunkt und \( {\color{gr}r} \) und \({\color{gr}\overline{MX}} \) für den Radius/ den Abstand zwischen \({\color{r}M} \) und einem beliebigen Punkt \({\color{li}X}\).
Aus dieser Grundkenntnis leiten sich dann die folgenden Kugelgleichungen ab.
Die Kugelgleichung wird also mithilfe des Mittelpunktes und des Radius aufgestellt, aber was sind die einzelnen Formen, die in der Einleitung erwähnt worden sind und wie stellst Du sie selbst auf? In diesem Abschnitt wird die vektorielle Gleichung und die Parameterform erklärt und wie Du von der einen in die andere übergehst.
Die Vektoren-Gleichung, auch vektorielle Gleichung der Kugelgleichung ist am simpelsten, wenn der Mittelpunkt auf dem Koordinatenursprung sitzt. In dem Fall ist jeder Punkt \({\color{li}X}\) so weit vom Mittelpunkt entfernt, wie der Betrag seines Ortsvektors \({\color{li}\vec{x}}\). Es gilt also:
\[\left| {\color{li}\vec{x}} \right| ={\color{gr}r} \quad \text{oder auch} \quad {\left| {\color{li}\vec{x}} \right|}^2 ={{\color{gr}r}}^2\]
Was, aber, wenn der Mittelpunkt der Kugel nicht auf dem Koordinatenursprung liegt? In diesem Fall muss der Radius erst bestimmt werden. Dafür bildest Du die Differenz zwischen dem Ortsvektor von \({\color{r}M}\) und dem Ortsvektor von \({\color{li}X}\):
\[\left|{\color{gr}\overline{MX}}\right|=| {\color{li}\vec{x}}-{\color{r}\vec{m}}|={\color{gr}r} \quad \text{oder auch} \quad {\left|{\color{gr}\overline{MX}}\right|}^2={| {\color{li}\vec{x}}-{\color{r}\vec{m}}|}^2={{\color{gr}r}}^2\]
Dadurch, dass Du hier den Mittelpunkt in die Rechnung gebracht hast, kannst Du darauf auch wieder zurückgreifen, falls er Dir nicht gegeben sein sollte.
Rechnerisch sieht das, dann später wie folgt aus:
Aufgabe 1
Stelle die vektorielle Kugelgleichung auf für eine Kugel mit dem Mittelpunkt \(M\,(1|3|2)\) und dem Radius \(r=3\).
Lösung
Setzte die Worte in die Formel ein:
\begin{align} {\left| \vec{x}- \vec{m} \right|}^2=r^2\\[0.2cm] {\left| \begin{pmatrix} x \\ y \\ z\end{pmatrix} - \begin{pmatrix} 1 \\ 3 \\ 2\end{pmatrix}\right|}^2 =9 \end{align}
Die vektorielle Gleichung hast Du so schon fertig aufgestellt.
Die Koordinatenform kannst Du direkt aus der vektoriellen Kugelgleichung ableiten, dafür schreibst Du Dir zuerst die vektorielle Gleichung in Vektorschreibweise auf. Seien also \({\color{li}\vec{x}}={ \color{li} \begin{pmatrix} x\\ y \\ z \end{pmatrix}}\) und \({\color{r}\vec{m}}={ \color{r} \begin{pmatrix} c\\ d \\ e \end{pmatrix}}\) gegeben, dann gilt:
\begin{align}{|{\color{li} \vec{x}}-{\color{r} \vec{m}}|}^2&={{\color{gr}r}}^2\\[0.2cm]\Rightarrow {\left| {\color{li}\begin{pmatrix} x \\ y \\ z \end{pmatrix}}-{\color{r} \begin{pmatrix} c \\ d \\ e \end{pmatrix}} \right|}^2&={{\color{gr}r}}^2\\[0.2cm]\left({\sqrt{(x-c)^2+(y-d)^2+(z-e)^2}}\right)^2&={{\color{gr}r}}^2\\[0.2 cm] {(x-c)}^2+(y-d)^2 +(z-e)^2&={{\color{gr}r}}^2\\\end{align}
Falls Dir diese Rechnung Kopfzerbrechen bereitet, schau mal bei "Betrag eines Vektors" vorbei.
Beim Ausrechnen des Terms hat sich hier die Wurzel durch das Quadrieren weggekürzt und übrig bleibt der innere Teil als Koordinatenform für die Kugelgleichung.
Kannst Du Dir darunter noch nichts vorstellen? Dann schau Dir doch das folgende Beispiel an:
Aufgabe 2
Wandle die Vektoren-Gleichung aus Aufgabe 1 in ihre Koordinatenform um:
Lösung
Rechne dafür den Betrag der Vektoren-Gleichung aus:
\begin{align} {\left| \begin{pmatrix} x \\ y \\ z\end{pmatrix} - \begin{pmatrix} 1 \\ 3 \\ 2\end{pmatrix}\right|}^2 =9\\\left({\sqrt{(x-1)^2+(y-3)^2+(z-2)^2}}\right)^2={{\color{gr}r}}^2\\[0.2 cm] {(x-1)}^2+(y-3)^2+(z-2)^2={{\color{gr}r}}^2 \end{align}
Und schon hast Du die Koordinatenform der Kugel aufgestellt.
Das Praktische an der Parameterform ist, dass Du aus Ihr sowohl Punkte auf der Kugel ablesen, als auch Ihren Mittelpunkt schnell erkennen kannst.
Aufgabe 3
Für eine Kugel ist die Gleichung \(x^2+y^2+z^2 +6x-2y-2z-5=0\) gegeben. Forme sie zur Parameterform um und bestimme den Mittelpunkt der Kugel.
Lösung
1. Schritt:
Stelle als Erstes die Gleichung so um, dass die einzelnen Unbekannten zusammen in einer Klammer stehen und der feste Wert hinter dem Gleichheitszeichen:
\[(x^2+6x)+(y^2-2y)+(z^2-2z)=5\]
2. Schritt:
Führe jetzt die quadratische Ergänzung durch, um die Koordinatengleichung zu erhalten:
\begin{align} (x^2+6x)+(y^2-2y)+(z^2-2y)&=5\\ (x+3)^2+(y-1)^2+(z-1)^2&=5+9+1+1\\ (x+3)^2+(y-1)^2+(z-1)^2&=16 \end{align}
Aus dieser Koordinatengleichung kannst Du jetzt ablesen, dass der Mittelpunkt der Kugel der Punkt \(M\,(-6|1|1)\) ist
Die Parameterform hat wiederum einen ganz anderen Ansatz. In dieser Form wird ein Punkt auf der Kugel mithilfe des Radius und zwei Winkel angegeben. Das Zentrum der Kugel liegt dabei wieder entweder im Koordinatenursprung oder in dem Mittelpunkt \(M\). Eine zur x-y-Ebene senkrechte Gerade, Polachse genannt, geht durch dieses Zentrum und gibt so die Polrichtung an. Zu dieser Polachse liegt wiederum eine senkrechte Ebene, die gleichzeitig auch durch den Mittelpunkt verläuft, diese Ebene wird Äquatorebene genannt.
Abb. 2: Winkel der Parameterform
Charakterisiert wird ein beliebiger Punkt P durch folgende Werte:
Zusammen ergeben diese Punkte dann die Kugelkoordinaten \(P\,(r,\theta,\phi)\)
Willst Du diese doch in kartesischen Koordinaten erhalten, dann kannst Du folgende Rechnungen durchführen:
\begin{align} x & = r\cdot \sin{\theta} \cdot \cos{\phi} \\ y & = r \cdot \sin{\theta} \cdot \sin{\phi} \\ z & = r \cdot \cos{\theta} \end{align}
Zur Verdeutlichung kannst Du Dir folgendes Beispiel ansehen:
Aufgabe 4
Rechne die Kugelkoordinaten \(P\,(8|20^{\circ}|33^{\circ})\)in das kartesische Koordinatensystem um.
Lösung
Setzte die gegebenen Werte in die Gleichungen ein und rechne sie aus:
\begin{align}x&=r \cdot \sin{\theta}\cdot \cos{\phi}\\x&=8 \cdot \sin({20^{\circ}}) \cdot \cos({33^{\circ}})\\x&= \text{2,29}\\\\y&=r \cdot \sin{\theta} \cdot \sin{\phi}\\y&=8 \cdot \sin({20^{\circ}}) \cdot \sin({33^{\circ}})\\y&= \text{1,49}\\\\z&=r \cdot \cos{\theta}\\z&=8 \cdot \cos({20^{\circ}})\\z&= \text{7,52}\end{align}
Die Kartesischen Koordinaten lauten: \(P\,(\text{2,29}|\text{1,49}|\text{7,52})\)
In diesem Abschnitt findest Du zur Übung ein paar Aufgaben zu den obigen Themen:
Aufgabe 5
Stelle die vektorielle Kugelgleichung auf für eine Kugel mit dem Mittelpunkt \(M\,(2|5|3)\) und dem Radius \(r=4\).
Lösung
Setze die Werte in die Formel ein:
\begin{align} {\left| \vec{x}- \vec{m} \right|}^2=r^2\\[0.2cm] {\left| \begin{pmatrix} x \\ y \\ z\end{pmatrix} - \begin{pmatrix} 2 \\ 5 \\ 3\end{pmatrix}\right|}^2 =16 \end{align}
Die vektorielle Gleichung hast Du so schon fertig aufgestellt.
Aufgabe 6
Stelle die gegebene Gleichung \(x^2+y^2+z^2-4x+2y-8z-4=0\) zur Parameterform um und bestimme den Mittelpunkt \(M\).
Lösung
1. Schritt:
Stelle als Erstes wieder die Gleichung um:
\begin{align}x^2+y^2+z^2-4x+2y-8z-4&=0&&|+4\\(x^2-4x)+(y^2+2y)+(z^2-8z)&=4\\\end{align}
2. Schritt:
Führe jetzt die quadratische Ergänzung durch:\begin{align}(x^2-4x)+(y^2+2y)+(z^2-8z)&=4\\(x-2)^2+(y+1y)^2+(z-4z)^2&=4+4+1+16\\(x-2)^2+(y+1y)^2+(z-4z)^2&=25\end{align}
Der Mittelpunkt liegt damit bei \(M\,(2|-1|4)\).
Aufgabe 7
Rechne die folgende Kugelkoordinaten in die kartesische Koordinaten um:
\[P\,(10|50^{\circ}|11^{\circ})\]
Lösung
1. Schritt:
Setzte die gegebenen Werte in die Gleichungen ein und rechne sie aus:
\begin{align}x&=r \cdot \sin{\theta}\cdot \cos{\phi}\\x&=10 \cdot \sin({50^{\circ}}) \cdot \cos({11^{\circ}})\\x&= \text{7,52}\\\\y&=r \cdot \sin{\theta} \cdot \sin{\phi}\\y&=10 \cdot \sin({50^{\circ}}) \cdot \sin({11^{\circ}})\\y&= \text{1,46}\\\\z&=r \cdot \cos{\theta}\\z&=10 \cdot \cos({50^{\circ}})\\z&= \text{6,43}\end{align}
Die Kartesischen Koordinaten lauten: \(P\,(\text{7,52}|\text{1,46}|\text{6,43})\)
Die Koordinatenform kannst Du direkt aus der vektoriellen Kugelgleichung herleiten:\[{(x-c)}^2+(y-d)^2 +(z-e)^2={{\color{gr}r}}^2 \]Das Praktische an der Parameterform ist, dass Du aus Ihr sowohl Punkte auf der Kugel ablesen als auch Ihren Mittelpunkt schnell erkennen kannst.
Charakterisiert wird ein beliebiger Punkt P in einer Parameterform durch folgende Werte:
Die Kugelgleichung ist eine Form jeden Punkt auf der Oberfläche einer Kugel in einem Koordinatensystem darzustellen.
Die Kugelgleichung stellst Du auf, indem Du die den Betrag der Differenz des Ortsvektors des Mittelpunktes und des Ortsvektors eines beliebigen Punktes auf der Kugel quadrierst und dies mit dem quadrierten Radius der Kugel gleichsetzt.
Die Kugelgleichung sieht in der Koordinatenform so aus: (x-c)^2+(y-d)^2 +(z-e)^2=r^2
Du bestimmst den Mittelpunkt einer Kugel, indem Du die in der Koordinatenform jeweils die Werte hinter den Minuszeichen mit umgekehrten Vorzeichen in einen Punkt setzt.
Karteikarten in Kugelgleichung9
Lerne jetztWie lautet die Definition einer Kugel?
Eine Kugel wird in der analytischen Geometrie als eine Menge aller Punkte des Raumes beschrieben, die von einem gegebenen Mittelpunkt \(M\) denselben Abstand (Radius) \(r\) haben.
Wie lautet die Definition der Kugel im dreidimensionalen Raum?
Die Definition der Kugel im dreidimensionalen Raum lautet:
\[{\color{bl}k}[{\color{r}M};{\color{gr}r}]=\{{\color{li}X}|{\color{gr}\overline{MX}}={\color{gr}r}\} \]
Welche Formen der Kugelgleichung gibt es?
Parameterform
Wie lautet die allgemeine Form der vektoriellen Kugelgleichung?
Die allgemeine Form der vektoriellen Kugelgleichung lautet:
\[\left|{\color{gr}\overline{MX}}\right|=| {\color{li}\vec{x}}-{\color{r}\vec{m}}|={\color{gr}r} \] oder \[{\left|{\color{gr}\overline{MX}}\right|}^2={| {\color{li}\vec{x}}-{\color{r}\vec{m}}|}^2={{\color{gr}r}}^2\]
Wie lautet die allgemeine Form der Koordinatenform?
Die allgemeine Form der Koordinatenform lautet:
\[(x-c)^2+(y-d)^2+(z-e)^2=r^2\]
Was ist die Kugelgleichung?
Die Kugelgleichung ist eine Form, jeden Punkt auf der Oberfläche einer Kugel in einem Koordinatensystem darzustellen.
Du hast bereits ein Konto? Anmelden
Open in AppDie erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.
Melde dich an für Notizen & Bearbeitung. 100% for free.
Speichere Erklärungen in deinem persönlichen Bereich und greife jederzeit und überall auf sie zu!
Mit E-Mail registrieren Mit Apple registrierenDurch deine Registrierung stimmst du den AGBs und der Datenschutzerklärung von StudySmarter zu.
Du hast schon einen Account? Anmelden