Login Anmelden

Select your language

Suggested languages for you:
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|
Wechselwinkel

Winkel spielen in der Geometrie eine große Rolle. Oft wirst Du Winkel messen sollen und das möglichst genau. Damit Du nicht immer alle Winkel messen musst, gibt es ein paar Zusammenhänge zwischen den einzelnen Winkeln, der Nebenwinkel und der Scheitelwinkel zum Beispiel. Aber auch der Wechselwinkel, um welchen es hier gehen soll, kann helfen, Winkel nur einmal messen zu müssen.Es…

Von Expert*innen geprüfte Inhalte
Kostenlose StudySmarter App mit über 20 Millionen Studierenden
Mockup Schule

Entdecke über 200 Millionen kostenlose Materialien in unserer App

Wechselwinkel

Wechselwinkel

Speicher die Erklärung jetzt ab und lies sie, wenn Du Zeit hast.

Speichern
Illustration

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmelden

Nie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmelden
Illustration

Winkel spielen in der Geometrie eine große Rolle. Oft wirst Du Winkel messen sollen und das möglichst genau. Damit Du nicht immer alle Winkel messen musst, gibt es ein paar Zusammenhänge zwischen den einzelnen Winkeln, der Nebenwinkel und der Scheitelwinkel zum Beispiel. Aber auch der Wechselwinkel, um welchen es hier gehen soll, kann helfen, Winkel nur einmal messen zu müssen.

Wechselwinkel – Paare & Grundlagenwissen

Es gibt vier für Dich wichtige Winkelsätze. Diese bauen teilweise aufeinander auf und werden auch in anderen Bereichen der Geometrie häufig gebraucht.

Wenn Du mehr über die anderen Winkelsätze erfahren willst, schau einmal in den jeweiligen Artikeln nach.

Besonders wichtig sind die Sätze des Nebenwinkels und Scheitelwinkels. Auf diesen beiden Sätzen bauen der Wechselwinkel und Stufenwinkel auf.

Nebenwinkelsatz

Zwei Winkel sind Nebenwinkel voneinander, wenn sie an einer Geradenkreuzung nebeneinander liegen.

Schneiden sich zwei Geraden, so heißen benachbarte Winkelpaare Nebenwinkel. Nebenwinkel ergeben zusammen immer 180°.

Es gilt:

α+β=180°

Ein 180° Winkel wird auch gestreckter Winkel genannt.

Die beiden Geraden schneiden sich und es entstehen vier Winkelfelder. Die beiden Winkel α und β sowie γ und δbilden zusammen Winkelpaare, welche 180° ergeben. Auch α und δ sowie β und γ bilden Winkelpaare, welche zusammen 180° ergeben.

Wechselwinkel Nebenwinkel StudySmarterAbbildung 1: Nebenwinkel

Scheitelwinkelsatz

Zwei Winkel sind Scheitelwinkel, wenn sie an einer Geradenkreuzung gegenüber voneinander liegen.

Schneiden sich zwei Geraden, so heißen gegenüberliegender Winkelpaare Scheitelwinkel. Scheitelwinkel sind immer gleich groß.

Es gilt:

α=α'

Die beiden Geraden schneiden sich und es entstehen vier Winkelfelder. Die beiden Winkel α und γ sind gleich groß. Auch β und δ sind gleich groß.

Wechselwinkel Scheitelwinkel StudySmarterAbbildung 2: Scheitelwinkel

Stufenwinkelsatz

Stufenwinkel an geschnittenen Parallelen sind immer gleich groß.

Wenn zwei Geraden parallel gh sind und eine dritte Gerade die beiden Parallelen schneidet. So sind die Winkel auf einer Seite gleich groß. Dieses Winkelpaar heißt Stufenwinkel.

Es gilt:

α=α'

Wechselwinkel Stufenwinkel StudySmarterAbbildung 3: Stufenwinkel

Du kannst Dir das auch so vorstellen, als würden die Geraden mit den Winkeln den Buchstaben F bilden. Die Stufenwinkel sind dann jeweils an den Schnittpunkten der Striche. Aufgrund dessen werden Stufenwinkel manchmal auch als "F-Winkel" bezeichnet.

Wechselwinkel F-Winkel StudySmarterAbbildung 4: F-Winkel

Wechselwinkelsatz – Definition & Beispiel

In den Winkelsätzen vom Scheitelwinkel und Nebenwinkel schneiden sich zwei Geraden. Dagegen werden beim Stufenwinkel zwei parallele Geraden von einer dritten Geraden geschnitten. Auch beim Wechselwinkel geht es um parallele Geraden, die von einer Dritten geschnitten werden.

Wenn zwei Geraden ghparallel sind und eine dritte Gerade f die beiden Parallelen schneidet, so sind die Winkel, welche sich gegenüberliegen, aber nicht auf der gleichen Parallelen liegen, gleich groß. Dieses Winkelpaar heißt Wechselwinkel.

Es gilt:

α=α'

Anschaulich kannst Du Dir das auch vorstellen, als würden die Geraden zusammen ein Z bilden. Die Wechselwinkel liegen dann genau in den Nischen des Z. Deshalb werden sie auch manchmal "Z-Winkel" genannt.

Wechselwinkel Z-Winkel StudySmarterAbbildung 5: Z-Winkel

Die Voraussetzung in dieser Definition ist es, dass die Geraden parallel sind. Hier kannst Du auch die Umkehrung des Satzes anwenden.

Wenn Wechselwinkel gleich groß sind, sind die Geraden parallel.

Wechselwinkel Wechselwinkel StudySmarterAbbildung 6: Wechselwinkel

Nur bei Parallelen darfst Du den Wechselwinkelsatz anwenden.

Aufgabe 1

Berechne den Winkel α', wenn α=100° beträgt.

Wechselwinkel Wechselwinkel StudySmarterAbbildung 7: Wechselwinkel

Lösung

Es handelt sich bei den Winkeln α und α' um Wechselwinkel. Zusätzlich sind g und h parallel, weshalb Du den Wechselwinkelsatz anwenden darfst. Es gilt α=α'.

α=α'α'=100°

Der Winkel α' beträgt 100°.

Wechselwinkelpaare erkennen

Ob Du den Wechselwinkelsatz anwenden darfst, ist neben der Parallelendbedingung auch von weiteren Bedingungen abhängig.

Folgende Bedingungen müssen erfüllt sein, damit es sich um einen Wechselwinkel handelt:

  1. Sie liegen auf unterschiedlichen Seiten der Schnittgeraden f.
  2. Sie liegen auf unterschiedlichen Seiten der Parallelen g und h.

Für gleiche Farben gilt in dieser Abbildung, der Wechselwinkelsatz darf angewendet werden. Die jeweiligen Winkel bilden immer ein Wechselwinkelpaar.

Wechselwinkel alle Wechselwinkel StudySmarterAbbildung 8: alle Wechselwinkel

Aufgabe 2

Darf der Wechselwinkelsatz angewendet werden?

Die Schwierigkeit liegt hierbei nicht im Rechnen. Das Erkennen, ob der Satz angewendet werden darf oder nicht, ist die Schwierigkeit.

Wechselwinkel nicht parallel Geraden StudySmarterAbbildung 9: nicht parallele Geraden

Lösung

In diesem Beispiel darfst Du den Satz nicht benutzen, da es sich bei den Geraden g und h um sich schneidende Geraden handelt. Sie sind nicht parallel. Wenn Du die Geraden g und h verlängerst, siehst Du einen Schnittpunkt entstehen.

Du kannst auch durch Messen ermitteln, ob die Geraden parallel sind. Dafür nimmst Du ein Lineal oder Geodreieck zur Hand und misst auf der rechten und linken Seite den Abstand der Geraden g und h. Dieser stimmt nicht überein. Nur wenn der Abstand auf beiden Seiten übereinstimmt, sind die Geraden parallel.

Anwendung Wechselwinkel – Parallelogramm

Wechselwinkel findest Du auch in vielen geometrischen Figuren. Über die Winkelsätze lassen sich dort bestimmte Eigenschaften der Winkel beweisen, so auch beim Parallelogramm.

Ein Parallelogramm ist eine geometrische Figur, bei der die gegenüberliegenden Seiten parallel und gleich lang sind. Außerdem sind die diagonalen Winkel gleich groß, also α=γ und β=δ.

Wechselwinkel Parallelogramm StudySmarterAbbildung 10: Parallelogramm

Nachweisen lässt sich die Größe der Winkel über den Wechselwinkelsatz und Stufenwinkelsatz. Dafür verlängerst Du die Seiten des Parallelogramms. Neben δ entsteht ein weiter Winkel α'. Dieser Winkel ist laut dem Wechselwinkelsatz gleich groß mit α. Wendest Du nun den Stufenwinkelsatz auf α' an, erhältst Du γ.

Wechselwinkel Parallelogramm mit Wechselwinkel StudySmarterAbbildung 11: Parallelogramm mit Wechselwinkel

Somit ist bewiesen, dass die diagonalen Winkel α und γ gleich groß sind. Analog könntest Du den Beweis auch für β und δ durchführen.

Zusammenhang zwischen Stufen- und Wechselwinkel

Der Wechselwinkelsatz und der Stufenwinkelsatz haben die Gemeinsamkeit, dass sie beide an parallelen Geraden liegen. Durch diesen Zusammenhang kannst Du den Wechselwinkelsatz mithilfe des Stufenwinkelsatzes herleiten.

Dafür nimmst Du als Grundlage den Stufenwinkel. Für diesen gilt α=α', wenn g und h parallel sind.

Wechselwinkel Wechselwinkel Herleitung StudySmarterAbbildung 12: Wechselwinkelsatz Herleitung

Der Wechselwinkel von α ist der Scheitelwinkel von α'. Dementsprechend wendest Du den Scheitelwinkelsatz auf α' an und erhältst α''. Dieser ist genauso groß wie α' und demzufolge auch wie α. Für die Schlussfolgerung bedeutet dies, dass der Wechselwinkel an parallelen Geraden gleich groß sein muss mit dem Ausgangswinkel α.

Wechselwinkel Wechselwinkel Herleitung StudySmarterAbbildung 13: Wechselwinkelsatz Herleitung

Wechselwinkel berechnen – Aufgaben zum Üben

In den folgenden Aufgaben kannst Du Dein eben erlerntes Wissen testen.

Aufgabe 3

Berechne β, γ und δ mithilfe der Winkelsätze.

Wechselwinkel Anwendung Winkelsätze StudySmarterAbbildung 14: Anwendung Winkelsätze

Lösung

Als Erstes berechnest Du β über den Scheitelwinkelsatz. Du stellst die Gleichung zum Scheitelwinkelsatz auf und stellst diese an β um.

α+β=180°|-αβ=180°-αβ=180°-60°β=120°

Du erhältst für β einen Winkel von 120°.

Danach benutzt Du den Stufenwinkelsatz, um γ zu erhalten. Du setzest α und γ gleich.

α=γγ=60°

Der Winkel γ beträgt 60°.

Zum Schluss ermittelst Du δ. Hierfür kannst Du den Scheitelwinkelsatz oder Wechselwinkelsatz nutzen. Der Scheitelwinkel von δ ist γ. Du kannst diese beiden gleichsetzen und erhältst δ. Du kannst auch mit dem Wechselwinkel von δ gleichsetzen. Der Wechselwinkel von δ ist α.

α=γ=δδ=60°

Der Winkel δ beträgt 60°.

Aufgabe 4

Berechne den Winkel β.

Wechselwinkel Anwendung Winkelsätze StudySmarterAbbildung 15: Anwendung Winkelsätze

Lösung

Ermittle als Erstes den Winkel γ, den Nebenwinkel von β. Dafür kannst Du den Satz des Wechselwinkels nutzen. Du setzt die Winkel gleich.

α=γy=123°

Dann kannst Du β über den Nebenwinkel berechnen. Dafür stellst Du die Nebenwinkelgleichung auf und stellst diese um nach β.

β+γ=180°|γ=123°β+123°=180°|-123°β=57°

Der Winkel β beträgt 57°.

Wechselwinkel – Das Wichtigste

  • Wenn zwei Geraden parallel gh sind und eine dritte Gerade die beiden Parallelen schneidet. So sind die Winkel, welche sich gegenüberliegen, aber nicht auf der gleichen Parallelen liegen, gleich groß. Dieses Winkelpaar heißt Wechselwinkel. Es gilt: α=α'.
  • Die Umkehrung des Satzes gilt: Wenn Wechselwinkel gleich groß sind, sind die Geraden parallel.
  • Der Wechselwinkelsatz lässt sich über den Stufenwinkelsatz und Scheitelwinkelsatz herleiten.

Nachweise

  1. Ernst (1977). Geometrie 1. Ehrenwirth Verlag, München.

Häufig gestellte Fragen zum Thema Wechselwinkel

Wenn zwei Parallelen g || h von einer dritten Geraden f geschnitten werden, ist der Wechselwinkel der Winkel, welcher dem Winkel auf der anderen Parallele gegenüberliegt.

Ein Wechselwinkelpaar sind die beiden Winkel, welche den Wechselwinkel bilden.

Wenn Du Wechselwinkel berechnen sollst, hast Du einen Winkel bereits gegeben. Der dazugehörige Wechselwinkel ist genauso groß wie der Dir gegebene Winkel. Es gilt: α=α'.

Die beiden eingeschlossenen Winkel vom "Z" sind Wechselwinkel. Aus diesem Grund wird der Wechselwinkel auch "Z-Winkel" genannt.

Finales Wechselwinkel Quiz

Wechselwinkel Quiz - Teste dein Wissen

Frage

Welche vier Winkelsätze gibt es?

Antwort anzeigen

Antwort

Scheitelwinkelsatz

Frage anzeigen

Frage

Wie definiert sich der Wechselwinkelsatz?

Antwort anzeigen

Antwort

Wenn zwei Geraden parallel  sind und eine dritte Gerade die beiden Parallelen schneidet. So sind die Winkel, welche sich gegenüberliegen aber nicht auf der gleichen Parallelen liegen, gleich groß. Dieses Winkelpaar heißt Wechselwinkel.

Es gilt: .

Frage anzeigen

Frage

Wie lautet die Umkehrung des Wechselwinkelsatzes?

Antwort anzeigen

Antwort

Wenn Wechselwinkel gleich groß sind, sind die Geraden parallel. 

Frage anzeigen

Frage

Berechne an parallelen Geraden den Wechselwinkel  von , wenn  ist.

Antwort anzeigen

Antwort

Da es sich um Parallelen handelt gilt:

Also ist .

Frage anzeigen

Frage

Darf an diesen Geraden der Wechselwinkelsatz angewendet werden?

Antwort anzeigen

Antwort

Nein. Es handelt sich bei den Geraden um keine Parallelen.

Frage anzeigen

Frage

Berechne die Größe des Winkels , wenn  ist. Gebe den angewendeten Winkelsatz an.


Antwort anzeigen

Antwort

Der Wechselwinkelsatz muss angewendet werden.

Der Winkel  ist 40° groß.

Frage anzeigen

Frage

Mit Hilfe welcher Winkelsätze kannst Du den Wechselwinkelsatz herleiten?

Antwort anzeigen

Antwort

Scheitelwinkelsatz

Frage anzeigen

Frage

Um was für Winkel handelt es sich bei diesem Bild? Wie groß ist , wenn  ist.

Antwort anzeigen

Antwort

Es handelt sich um Wechselwinkel. 

Der Winkel  ist 20° groß.

Frage anzeigen

Frage

Beschreibe, wann Wechselwinkel entstehen.

Antwort anzeigen

Antwort

Wechselwinkel entstehen, wenn zwei parallele Geraden von einer dritten geschnitten werden.

Frage anzeigen

Frage

Zeichne den Wechselwinkel von  ein.

Antwort anzeigen

Antwort

Frage anzeigen

Frage

Wie definiert sich der Stufenwinkelsatz?

Antwort anzeigen

Antwort

Wenn zwei Geraden parallel  sind und eine dritte Gerade die beiden Parallelen schneidet. So sind die Winkel auf einer Seite gleich groß. Dieses Winkelpaar heißt Stufenwinkel.

Es gilt: .

Frage anzeigen

Frage

Wie definieren sich Scheitelwinkel?

Antwort anzeigen

Antwort

Schneiden sich zwei Geraden, so heißen gegenüberliegender Winkelpaare Scheitelwinkel. Scheitelwinkel sind immer gleich groß.

Es gilt: α=α'.

Frage anzeigen

Frage

Wie definieren sich Nebenwinkel?

Antwort anzeigen

Antwort

Schneiden sich zwei Geraden, so heißen benachbarte Winkelpaare Nebenwinkel. Nebenwinkel ergeben zusammen immer 180°.

 Es gilt: α+β=180°.

Frage anzeigen

Frage

Beschrifte die Abbildung mit den fehlenden Winkeln, sodass Wechselwinkelpaare entstehen.


Antwort anzeigen

Antwort

Frage anzeigen

Frage

Gebe die Bedingungen an, wann zwei Winkel ein Wechselwinkelpaar bilden.

Antwort anzeigen

Antwort

  1. Die Geraden müssen parallel sein.
  2. Sie liegen auf unterschiedlichen Seiten der Schnittgeraden f.
  3. Sie liegen auf unterschiedlichen Seiten der Parallelen g und h.

Frage anzeigen

Mehr zum Thema Wechselwinkel
60%

der Nutzer schaffen das Wechselwinkel Quiz nicht! Kannst du es schaffen?

Quiz starten

Wie möchtest du den Inhalt lernen?

Karteikarten erstellen
Inhalte meiner Freund:innen lernen
Ein Quiz machen

Wie möchtest du den Inhalt lernen?

Karteikarten erstellen
Inhalte meiner Freund:innen lernen
Ein Quiz machen

Kostenloser mathe Spickzettel

Alles was du zu . wissen musst. Perfekt zusammengefasst, sodass du es dir leicht merken kannst!

Jetzt anmelden

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Melde dich an für Notizen & Bearbeitung. 100% for free.

Fang an mit StudySmarter zu lernen, die einzige Lernapp, die du brauchst.

Jetzt kostenlos anmelden
Illustration