• :00Tage
  • :00Std
  • :00Min
  • 00Sek
Ein neues Zeitalter des Lernens steht bevorKostenlos anmelden
Login Anmelden

Select your language

Suggested languages for you:
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Parallelogramm

Ein Parallelogramm ist ein besonderes Viereck, dessen gegenüberliegende Seiten parallel sind. In dieser Erklärung bekommst Du einen Überblick über alle Eigenschaften eines Parallelogramms. Du erfährst auch, wie Du am besten ein Parallelogramm zeichnest.Ein Parallelogramm ist ein besonderes Viereck, dessen gegenüberliegende Seiten parallel sind.Abbildung 1: ParallelogrammParallelogramm beschriftenEin Parallelogramm wird folgendermaßen beschriftet:Die Beschriftung der Seiten erfolgt mit Kleinbuchstaben. Die Grundseite ist a…

Von Expert*innen geprüfte Inhalte
Kostenlose StudySmarter App mit über 20 Millionen Studierenden
Mockup Schule

Entdecke über 200 Millionen kostenlose Materialien in unserer App

Parallelogramm

Parallelogramm
Illustration

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmelden

Nie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmelden
Illustration

Ein Parallelogramm ist ein besonderes Viereck, dessen gegenüberliegende Seiten parallel sind. In dieser Erklärung bekommst Du einen Überblick über alle Eigenschaften eines Parallelogramms. Du erfährst auch, wie Du am besten ein Parallelogramm zeichnest.

Eigenschaften & Definition Parallelogramm

Ein Parallelogramm ist ein besonderes Viereck, dessen gegenüberliegende Seiten parallel sind.

Parallelogramm Parallelogramm StudySmarterAbbildung 1: Parallelogramm

Parallelogramm beschriften

Ein Parallelogramm wird folgendermaßen beschriftet:

  • Die Beschriftung der Seiten erfolgt mit Kleinbuchstaben. Die Grundseite ist a und die Beschriftung erfolgt gegen den Uhrzeigersinn mit b, c und d an den anderen Seiten.
  • Die Beschriftung der Eckpunkte erfolgt mit Großbuchstaben und gegen den Uhrzeigersinn: A, B,C ,D.
  • Die Winkel werden passend zu ihren Eckpunkten mit \( \alpha \, \beta \, \gamma\) und \( \delta \) beschriftet.
  • Die Diagonalen eines Parallelogramms werden mit e und f beschriftet.

Die beiden Diagonalen eines Parallelogramms schneiden sich jeweils genau in ihrer Hälfte.

Parallelogramm Parallelogramm beschriften StudySmarterAbbildung 2: Parallelogramm beschriften

Ein Parallelogramm hat weder einen Um- noch Inkreis.

Parallelogramm Eigenschaften

Das Parallelogramm ist ein Viereck und hat somit vier Ecken. Dazu hat es noch viele andere Eigenschaften, die in diesem Abschnitt erklärt werden.

Parallelogramm Seitenlängen

Die beiden gegenüberliegenden Seiten eines Parallelogramms sind immer parallel und gleich lang. \( a=c \,;\, b=d \)

Parallelogramm Seitenlängen eines Parallelogramms StudySmarterAbbildung 3: Seitenlängen eines Parallelogramms

Parallelogramm Winkel

Die gegenüberliegenden Winkel eines Parallelogramms sind immer gleich groß. \( \alpha = \gamma ; \beta=\delta \).

Die Innenwinkelsumme eines Parallelogramms beträgt immer 360°, wobei die benachbarten Winkel zusammen immer 180° ergeben.\( \alpha+\beta+\gamma+\delta=360°\)

Parallelogramm Winkel Parallelogramm StudySmarterAbbildung 4: Winkel Parallelogramm

Parallelogramm Diagonalen

Die Diagonalen eines Parallelogramms treffen sich genau in der Mitte.

Parallelogramm Diagonalen eines Parallelogramms StudySmarterAbbildung 5: Diagonalen eines Parallelogramms

Parallelogramm Symmetrieachse

Ein Parallelogramm ist immer Punktsymmetrisch und nie Achsensymmetrisch, abgesehen von zwei Ausnahmen, der Raute und dem Rechteck.

Der Symmetriepunkt eines Parallelogramms ist der Schnittpunkt beider Diagonalen.

Parallelogramm Punktsymmetrie eines Parallelogramms StudySmarterAbbildung 6: Punktsymmetrie eines Parallelogramms

Besondere Parallelogramme

Es gibt zwei besondere Parallelogramme. Dazu zählen die Raute und das Rechteck.

Aber was genau sind diese geometrischen Figuren?

Raute

Eine Raute ist eine geometrische Form, die Du schon öfter im Alltag gesehen hast. Wie zum Beispiel bei einem Kartenspiel das Symbol Caro.

Raute Eigenschaften:

  • \( a=b=c=d \) , alle Seiten sind gleichlang.
  • \( \alpha=\gamma ; \beta=\delta \) gegenüberliegende Winkel sind gleich groß.
  • Eine Raute hat zwei Diagonalen, die gleich lang sind und orthogonal aufeinander stehen

Parallelogramm Raute StudySmarterAbbildung 7: Raute

Das Besondere an einer Raute, im Vergleich zum gewöhnlichen Parallelogramm, ist, dass aller Seiten \(a=b=c=d\) gleich lang sind.

Wenn Du noch mehr über die Raute erfahren möchtest, schau Dir doch den passenden Artikel dazu an.

Rechteck

Das Rechteck ist die gängigste Art des Parallelogramms und hat folgende Eigenschaften.

Eigenschaften des Rechtecks:

  • \( \alpha=\beta=\gamma=\delta=90° \)
  • Das Rechteck hat vier Ecken A ,B ,C und D.
  • Das Rechteck hat vier Seiten a,b,c und d.
  • \( \alpha+\beta+\gamma+\delta=360° \)

Parallelogramm Rechteck StudySmarterAbbildung 8: Rechteck

Das Besondere an einem gewöhnlichen Rechteck, gegenüber einem gängigen Parallelogramm, ist, dass die Winkel \( \alpha=\beta=\gamma=\delta\) alle \(90°\) haben.

Wenn Du noch mehr zum Thema Rechteck erfahren möchtest, kannst Du Dir den Artikel dazu anschauen.

Parallelogramm zeichnen

Um ein Parallelogramm zu zeichnen, benötigst Du drei gegebene Eigenschaften. Du benötigst:

  • die Seitenlänge von a oder c
  • die Seitenlänge von b oder d
  • einen Winkel \( \alpha \, \beta\, \gamma \) oder \( \delta \)

Wenn Du diese drei Werte gegeben hast, musst Du folgende Schritte befolgen:

  1. Zuerst zeichnest Du die Grundseite a
  2. Danach markierst Du die passende Winkelgröße, zeichnest die Seite b in passender Länge an die Grundseite a.
  3. Zuletzt musst Du die parallelen Seiten c und d in der gleichen Länge an die Punkte einzeichnen.

Diese Schritte siehst Du nun in der Praxis.

Aufgabe 1

Konstruiere das Parallelogramm mit der Länge der Grundseite 7 cm und der Länge der Seite b mit 4 cm. Der Winkel \(\alpha \) ist 50° groß.

Lösung

Zuerst schreibst Du Dir die gegebenen Werte aus der Aufgabenstellung raus.

\begin{align} a &= 7\,cm \\ b &= 4\,cm \\ \alpha&= 50^\circ\end{align}

Danach zeichnest Du die Grundseite a ein.

Parallelogramm Parallelogramm konstruieren StudySmarterAbbildung 9: Parallelogramm konstruieren

Danach misst Du den passenden Winkel \( \alpha = 50^{°} \) ab und zeichnest die Seite b in Länge von \( b=4 \,cm\) ein.

Parallelogramm Parallelogramm konstruieren StudySmarterAbbildung 10: Parallelogramm konstruieren

Zuletzt musst Du die parallelen Seiten c und d in der gleichen Länge an die Punkte einzeichnen und das Parallelogramm beschriften.

Parallelogramm Parallelogramm konstruieren StudySmarterAbbildung 11: Parallelogramm konstruieren

Flächeninhalt Parallelogramm

Die Fläche ist eine zweidimensionale Ebene im Raum.

Der Flächeninhalt A eines Parallelogramms ist das Maß für die Größe der Vierecksfläche. Er ist abhängig von der Grundfläche g und der Höhe h.

Den Flächeninhalt A eines Parallelogramms kannst Du berechnen, aber wie geht das?

Parallelogramm Flächeninhalt Parallelogramm StudySmarterAbbildung 12: Flächeninhalt Parallelogramm

Zum Berechnen des Flächeninhalts A benötigst Du eine Formel.

Formel zum Berechnen des Flächeninhalts A eines Parallelogramms mit der Höhe h und der Grundseite g lautet:

\[ A= g \cdot h \]

Falls Du noch mehr über diese Thematik erfahren möchtest, hast Du die Möglichkeit Dir die Erklärung" Flächeninhalt Parallelogramm" anzuschauen.

Parallelogramm Umfang

Jede geometrische Figur hat einen Umfang U.

Der Umfang U eines Parallelogramms ist die Länge aller addierter Seitenlängen \( a,\,b,\,c\) und \(d\).

Den Umfang eines Parallelogramms berechnest Du, in dem Du eine Formel verwendest

Formel zur Berechnung des Umfangs eines Parallelogramms mit allen Seiten \( a,\,b,\,c\) und \(d\):

\[ U= 2a + 2b \]

Um den Umfang eines Parallelogramms zu berechnen, musst Du die Längen der Seiten addieren. Da die Seiten \( a\) und \(c\) gleich lang sind, reicht es, wenn Du die Seite a mal zwei nimmst.

Wenn Du noch mehr zur Berechnung des Umfangs eines Parallelogramms herausfinden möchtest, kannst Du die gerne die Erklärung "Umfang Parallelogramm" ansehen.

Parallelogramm Formel

Jetzt hast Du alle Formeln zum Berechnen eines Parallelogramms auf einen Blick. Dazu gehören die Berechnung des Umfangs, Flächeninhalts, der Diagonalen und der Höhen.

BerechnungFormel
Flächeninhalt

\[ A= g \cdot h \]

Umfang

\[ U= 2a + 2b \]

Winkel \( \alpha\) & \(\beta\)\[ \alpha=180°- \beta \]\[ \beta=180°- \alpha\]
Diagonale e & f\[e=\sqrt{a^{2}+b^{2}-2\cdot a\cdot b \cdot cos(\beta]}\]\[f=\sqrt{a^{2}+b^{2}-2\cdot a\cdot b \cdot cos(\alpha]}\]
Höhe \(h_{a}\)\[h_{a}=b \cdot sin( \alpha) \]
Höhe \(h_{b}\)\[h_{b}=a \cdot sin( \alpha) \]

Nun hast Du alle wichtigen Informationen auf einen Blick!

Parallelogramm – Das Wichtigste auf einen Blick

  • Eigenschaften eines Parallelogramms:
    • Das Parallelogramm ist ein Viereck, hat also vier Ecken.
    • Die beiden gegenüberliegenden Seiten eines Parallelogramms sind immer parallel und gleich lang. a=c b=d
    • Die gegenüberliegenden Winkel eines Parallelogramms sind immer gleich groß. \( \alpha = \gamma ; \beta=\delta \)
    • Die Innenwinkelsumme eines Parallelogramms beträgt immer 360°, wobei die benachbarten Winkel zusammen immer 180° ergeben. \( \alpha+\beta+\gamma+\delta=360°\)
    • Diagonalen treffen sich gegenseitig in der Mitte.
  • Besondere Parallelogramme sind die Raute und das Rechteck.
  • Formel zum Berechnen des Flächeninhalts eines Parallelogramms:

\[ A= g \cdot h \]

  • Formel zur Berechnung des Umfangs eines Parallelogramms:

\[ U= 2a + 2b \]

  • Parallelogramme sind immer Punktsymmetrisch.

Nachweise

  1. Heß (1914): Kongruenz der Figuren. Zentrische Symmetrie. Parallelogramm und Trapez. Springer. Heidelberg.
  2. Roth, Wittmann (2018): Ebenen Figuren und Körper. Springer. Deutschland

Häufig gestellte Fragen zum Thema Parallelogramm

Die Formel zur Berechnung des Flächeninhalts eines Parallelogramms lautet:


A= g • h

Den Umfang eines Parallelogramms berechnest Du mithilfe einer Formel, die lautet:


U=2a+2b

Zuerst wird die Grundseite a eingezeichnet. Danach wird die passende Winkelgröße markiert und die Seite b in passender Länge an die Grundseite a gezeichnet. Zuletzt werden die parallelen Seiten c und d in der gleichen Länge an die Punkte eingezeichnet.

Das Parallelogramm hat vier Eigenschaften, nämlich die Seitenlängen, die Winkel, die Diagonalen und ihre Symmetrie

Finales Parallelogramm Quiz

Parallelogramm Quiz - Teste dein Wissen

Frage

Wie definiert sich ein Parallelogramm?

Antwort anzeigen

Antwort

Bei einem Parallelogramm sind die sich gegenüberliegenden Seiten gleich lang und parallel.

Frage anzeigen

Frage

Wie ist der Umfang definiert?

Antwort anzeigen

Antwort

Der Umfang ist die Summe aller Seiten, die eine Figur in der Ebene begrenzen. 

Frage anzeigen

Frage

Welche Vierecke sind auch Parallelogramme?

Antwort anzeigen

Antwort

Quadrat, Rechteck, Raute

Frage anzeigen

Frage

Welche besonderen Eigenschaften hat ein Parallelogramm?

Antwort anzeigen

Antwort

Ein Parallelogramm hat folgende Eigenschaften:

  • Es hat vier Seiten.
  • Jeweils die gegenüberliegenden Seiten sind parallel und gleich lang.

Frage anzeigen

Frage

Bei welchem der folgenden Vierecke handelt es sich um ein Parallelogramm?

Antwort anzeigen

Antwort

Quadrat

Frage anzeigen

Frage

Erläutere, was ein Parallelogramm ist.

Antwort anzeigen

Antwort

Ein Parallelogramm ist ein Viereck, welches gleichlange gegenüberliegende Seiten hat, die parallel zueinander liegen. Alle Winkel ergeben zusammen 360°.

Frage anzeigen

Frage

Wähle, welcher dieser Eigenschaften zu einem Parallelogramm gehören.

Antwort anzeigen

Antwort

Das Parallelogramm ist ein Viereck, hat also vier Ecken.

Frage anzeigen

Frage

Erläutere, wie ein Parallelogramm beschriftet wird.

Antwort anzeigen

Antwort

  • Die Beschriftung der Seiten erfolgt mit Kleinbuchstaben. Die Grundseite ist a und die Beschriftung erfolgt gegen den Uhrzeigersinn mit b, c und d an den Seiten.
  • Die Beschriftung der Eckpunkte erfolgt mit Großbuchstaben und gegen den Uhrzeigersinn: A, B,C ,D.
  • Die Winkel werden passend zu ihren Eckpunkten mit \( \alpha \, \beta \, \gamma\) und \( \delta \) beschriftet.
  • Die Diagonalen eines Parallelogramms werden mit e und f beschriftet.

Frage anzeigen

Frage

Nenne die besonderen Parallelogramm, die es gibt.

Antwort anzeigen

Antwort

Die Raute.

Frage anzeigen

Frage

Erläutere, wie ein Parallelogramm konstruiert wird.

Antwort anzeigen

Antwort

  1. Zuerst zeichnest Du die Grundseite a
  2. Danach markierst Du die passende Winkelgröße, zeichnest die Seite b in passender Länge an die Grundseite a.
  3. Zuletzt musst Du die parallelen Seiten c und d in der gleichen Länge an die Punkte einzeichnen.

Frage anzeigen

Frage

Berechne den Flächeninhalt eines Parallelogramms, dessen Werte folgende sind:


\begin{align} h&= 5\,cm \\ g&= 6\,cm\end{align}

Antwort anzeigen

Antwort

\[A= 40\, cm^{2}\]

Frage anzeigen

Frage

Berechne den Umfang eines Parallelogramms mit folgenden Werten:


\begin{align} a&= 11 \, cm \\ d&= 8\,cm \end{align}

Antwort anzeigen

Antwort

\[U=38 \, cm\]

Frage anzeigen

Frage

Erläutere, welche Symmetrie ein Parallelogramm hat?

Antwort anzeigen

Antwort

Punktsymmetrie

Frage anzeigen

Frage

Erläuere, was die Punktsymmetrie ist.

Antwort anzeigen

Antwort

Eine punktsymmetrische Figur besitzt einen Symmetriepunkt oder ein Symmetriezentrum. Das heißt, dass die Figur keine Symmetrieachsen besitzt (wie bei der Achsensymmetrie), sondern nur einen Symmetriepunkt. Wird diese Figur um 180° um den Symmetriepunkt gedreht, so ist die Figur deckungsgleich mit der Ausgangsfigur.

Frage anzeigen

Frage

Berechne den Flächeninhalt eines Parallelogramms, welches eine Höhe von 8 cm hat und eine Grundseite von 6 cm.

Antwort anzeigen

Antwort

Du liest Du aus der Aufgabe heraus, welche Werte dir gegeben sind.


\( g= 6 \, cm\)

\( h= 8 \, cm\)


Diese Werte setzt Du nun in die Formel zur Berechnung des Flächeninhalts ein.


\begin{align} A &= g \cdot h \\ &= 6 \, cm \cdot 8\, cm \\ &= 48\, cm^{2} \end{align}


Der Flächeninhalt des Parallelogramms liegt bei \( 48 \, cm^{2} \).


Frage anzeigen

Frage

Berechne den Umfang des Parallelogramms, welches eine Seite a mit der Länge 7 cm und eine Seite b mit der Länge 12 hat.

Antwort anzeigen

Antwort

Du liest Du der Aufgabe ab, welche Werte Dir gegeben sind.


\(a= 7 \, cm\)

\(b= 12 \, cm\)


Diese Werte werden jetzt in die Formel eingesetzt.


 \begin{align} U &= 2a + 2b \\ &= 2 \cdot 7 \, cm + 2 \cdot 12 \, cm \\ &= 14 \, cm+24 \, cm  \\&= 38 \, cm \end{align}


Der Umfang des Parallelogramms liegt bei \( 38 \, cm \).


Frage anzeigen

Frage

Beschreibe, wo der Symmetriepunkt eines Parallelogramms liegt?

Antwort anzeigen

Antwort

Der Symmetriepunkt eines Parallelogramms liegt an dem Schnittpunkt beider Diagonalen

Frage anzeigen

Mehr zum Thema Parallelogramm
60%

der Nutzer schaffen das Parallelogramm Quiz nicht! Kannst du es schaffen?

Quiz starten

Wie möchtest du den Inhalt lernen?

Karteikarten erstellen
Inhalte meiner Freund:innen lernen
Ein Quiz machen

94% der StudySmarter Nutzer erzielen bessere Noten.

Jetzt anmelden

94% der StudySmarter Nutzer erzielen bessere Noten.

Jetzt anmelden

Wie möchtest du den Inhalt lernen?

Karteikarten erstellen
Inhalte meiner Freund:innen lernen
Ein Quiz machen

Kostenloser mathe Spickzettel

Alles was du zu . wissen musst. Perfekt zusammengefasst, sodass du es dir leicht merken kannst!

Jetzt anmelden

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Melde dich an für Notizen & Bearbeitung. 100% for free.

Fang an mit StudySmarter zu lernen, die einzige Lernapp, die du brauchst.

Jetzt kostenlos anmelden
Illustration