Select your language

Suggested languages for you:
Log In Anmelden
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Die All-in-one Lernapp:

  • Karteikarten
  • NotizenNotes
  • ErklärungenExplanations
  • Lernpläne
  • Übungen
App nutzen

Kreis im Dreieck

Save Speichern
Print Drucken
Edit Bearbeiten
Melde dich an und nutze alle Funktionen. Jetzt anmelden
Kreis im Dreieck

In einem Dreieck sind zahlreiche Konstruktionen möglich. Die Kreise eines Dreiecks bilden dabei einen kleinen Teil der möglichen Konstruktionen ab. Wie genau Du einen Inkreis, Umkreis oder Ankreise konstruierst, erfährst Du hier.

Kreis im Dreieck – Grundlagenwissen

Dreiecke und Kreise sind beides wichtige Figuren der Geometrie.

Mehr zu diesen geometrischen Figuren erfährst Du in den Erklärungen "Dreieck" und "Kreis".

Dreieck

Ein Dreieck hat drei Ecken, welche durch drei Strecken miteinander verbunden werden.

Die Verbindungsstrecken zwischen drei Punkten A, B und C bilden ein Dreieck. Die drei Punkte dürfen dabei nicht auf einer Geraden liegen.

Die Verbindungsstrecken werden nach dem gegenüberliegendem Eckpunkt benannt.

Besondere Kreise eines Dreiecks konstruieren beschriftetes Dreieck StudySmarterAbbildung 1: beschriftetes Dreieck

Kreis

Als Kreis wird eine runde Linie verstanden, wobei diese Linie an jedem Punkt denselben Abstand zu dem Kreismittelpunkt hat, welcher nicht auf der Linie liegt.

Die Menge aller Punkte der Ebene, die von einem gegebenen Punkt M denselben Abstand r haben, heißt Kreis. Dieser hat den Mittelpunkt M und den Radius r. Der Mittelpunkt M ist dabei kein Punkt des Kreises.

Die doppelte Länge des Radius wird Durchmesser genannt und ist die maximale Entfernung zweier Punkte auf einem Kreis.

Besondere Kreise eines Dreiecks konstruieren Kreis mit Radius StudySmarterAbbildung 2: Kreis mit Radius

Kreise im Dreieck konstruieren

Jedes Dreieck besitzt einen Umkreis , einen Inkreis und drei Ankreise .

Besondere Kreise eines Dreiecks Dreieck mit Ankreis, Inkreis, Umkreis StudySmarterAbbildung 3: Dreieck mit Ankreis, Inkreis, Umkreis

Im Folgenden lernst Du, wie Du diese Kreise konstruierst. Dazu benötigst Du ein Lineal oder Geodreieck und einen Zirkel.

Der Feuerbachkreis ist ein weiterer Kreis des Dreiecks und verbindet die Höhenpunkte der Dreiecksseiten mit den Mittelpunkten der Seiten. Der Mittelpunkt ist gleichzeitig auch der Mittelpunkt des Umkreises des Mittendreiecks und des Höhenfußpunktdreiecks.

Besondere Kreise eines Dreiecks konstruieren Feuerbachkreis StudySmarterAbbildung 4: Feuerbachkreis

Umkreis eines Dreiecks

Der Name Umkreis verrät bereits, dass der Umkreis ein Kreis um das Dreieck ist. Genauer wird darunter Folgendes verstanden:

Der Umkreis eines Dreiecks ABC ist der Kreis , welcher durch alle drei Eckpunkte verläuft.

Sein Mittelpunkt ist der Schnittpunkt der drei Mittelsenkrechten , und der Dreiecksseiten und . Die Mittelsenkrechte ist eine Gerade, die senkrecht auf einer Strecke steht und durch den Mittelpunkt der Strecke verläuft.

Der Umkreismittelpunkt hat zu jedem Eckpunkt des Dreiecks denselben Abstand. Der Abstand zwischen dem Umkreismittelpunkt und den Eckpunkten ist der Umkreisradius.

Der Umkreismittelpunkt kann im Dreieck, auf dem Dreieck und außerhalb des Dreiecks liegen. Wo der Umkreismittelpunkt liegt, ist abhängig davon, ob das Dreieck spitzwinklig, rechtwinklig oder stumpfwinklig ist.

Bei einem stumpfwinkligem Dreieck liegt der Umkreismittelpunkt außerhalb des Dreiecks.

Besondere Kreise eines Kreises konstruieren Umkreis stumpfwinkliges Dreiecks StudySmarterAbbildung 5: Umkreis stumpfwinkliges Dreieck

Bei einem spitzwinkligem Dreieck liegt der Umkreismittelpunkt innerhalb des Dreiecks.

Besondere Kreise eines Dreiecks konstruieren Umkreis spitzwinkliges Dreieck StudySmarterAbbildung 6: Umkreis spitzwinkliges Dreieck

Bei einem rechtwinkligen Dreieck liegt der Umkreismittelpunkt auf der längsten Seite des Dreiecks. Diese liegt dem rechten Winkel immer gegenüber.

Besondere Kreise eines Dreiecks konstruieren Umkreis rechtwinkliges Dreieck StudySmarter Abbildung 7: Umkreis rechtwinkliges Dreieck

Umkreis konstruieren

Als Erstes zeichnest Du Dir ein beliebiges Dreieck und beschriftest es mit den Ecken und den Kanten .

Besondere Kreise eines Dreiecks konstruieren Umkreis konstruieren StudySmarterAbbildung 8: Umkreiskonstruktion

Als Nächstes konstruierst Du die Mittelsenkrechte von .

Wenn Du nicht mehr weißt, wie Du eine Mittelsenkrechte konstruierst, kannst Du das in den Erklärungen "Grundkonstruktionen" oder "Mittelsenkrechte konstruieren" nachlesen.

Besondere Kreise eines Dreiecks konstruieren Umkreis konstruieren StudySmarterAbbildung 9: Umkreiskonstruktion

Jetzt konstruierst Du die Mittelsenkrechte von . Du erhältst den Schnittpunkt der Mittelsenkrechten und gleichzeitig den Umkreismittelpunkt.

Besondere Kreise eines Dreiecks konstruieren Umkreis konstruieren StudySmarterAbbildung 10: Umkreiskonstruktion

Die letzte Mittelsenkrechte von musst Du nicht konstruieren, da Du bereits einen Schnittpunkt hast. Jedoch kannst Du das Konstruieren der letzten Mittelsenkrechten zur Überprüfung der Genauigkeit Deiner Konstruktion nutzen.

Besondere Kreise eines Dreiecks konstruieren Umkreis konstruieren StudySmarterAbbildung 11: Umkreiskonstruktion

Zum Schluss zeichnest Du nur noch einen Kreis durch die Eckpunkte des Dreiecks. Damit hast Du nun den Umkreis eines Dreiecks konstruiert.

Besondere Kreise eines Dreiecks konstruieren Umkreis konstruieren StudySmarterAbbildung 12: Umkreiskonstruktion

Wenn Du mehr zu der Konstruktion eines Umkreises im Dreieck erfahren möchtest, schaue gerne bei "Umkreis eines Dreiecks konstruieren" vorbei.

Inkreis eines Dreiecks

Der Inkreis ist ein Kreis, der innerhalb des Dreiecks liegt und jede Seite des Dreiecks berührt.

Der Inkreis eines Dreiecks ist der Kreis , welcher innerhalb des Dreiecks ABC liegt und alle drei Seiten an einer Stelle von innen berührt, aber nicht schneidet.

Der Mittelpunkt des Inkreises ist der Schnittpunkt der drei Winkelhalbierenden und . Die Winkelhalbierende ist eine Gerade, die einen Winkel in zwei gleich große Winkel teilt.

Der Inkreis ist der größte Kreis, der vollständig innerhalb des Dreiecks liegt.

Inkreis konstruieren

Als Erstes zeichnest Du ein beliebiges Dreieck und beschriftetest es mit den Ecken , den Kanten und den Winkeln.

Besondere Kreise eines Dreiecks konstruieren Inkreis konstruieren StudySmarterAbbildung 13: Inkreis konstruieren

Jetzt konstruierst Du die Winkelhalbierende .

Wenn Du nicht mehr weißt, wie Du eine Winkelhalbierende konstruierst, lies Dir die Erklärungen "Grundkonstruktionen" oder "Winkelhalbierende konstruieren" durch.

Besondere Kreise eines Dreiecks konstruieren Ankreis konstruieren StudySmarterAbbildung 14: Inkreis konstruieren

Nun konstruierst Du die Winkelhalbierende . Du erhältst den Schnittpunkt der Winkelhalbierenden und gleichzeitig den Mittelpunkt des Inkreises.

Besondere Kreise eines Dreiecks konstruieren Inkreis konstruieren StudySmarterAbbildung 15: Inkreis konstruieren

Die letzte Winkelhalbierende musst Du nicht konstruieren, da Du bereits einen Schnittpunkt hast. Du kannst sie jedoch zur Überprüfung der Genauigkeit Deiner Konstruktion nutzen.

Besondere Kreise eines Dreiecks konstruieren Inkreis konstruieren StudySmarterAbbildung 16: Inkreis konstruieren

Um den Berührpunkt des Inkreises mit einer Dreiecksseite zu erhalten, konstruierst Du ein Lot auf eine der Dreiecksseiten.

Wenn Du nicht mehr weißt, wie Du ein Lot konstruierst, lies in der Erklärung "Grundkonstruktionen" nach.

Besondere Kreise eines Dreiecks konstruieren Inkreis konstruieren StudySmarterAbbildung 17: Inkreis konstruieren

Zum Schluss zeichnest Du nur noch einen Kreis durch den Schnittpunkt des Lots mit einer Seite. Somit hast Du den Inkreis eines Dreiecks konstruiert.

Besondere Kreise eines Dreiecks konstruieren Inkreis konstruieren StudySmarterAbbildung 18: Inkreis konstruieren

Das gleichseitige Dreieck ist besonders.

Bei diesem sind die Winkelhalbierenden gleichzeitig die Mittelsenkrechten. Deshalb ist der Inkreismittelpunkt ebenfalls der Umkreismittelpunkt. Zur Konstruktion des Inkreises benötigst Du im gleichseitigen Dreieck kein Lot, sondern nutzt als Berührpunkte mit den Seiten den Schnittpunkt der Winkelhalbierenden mit den Seiten.

Besondere Kreise eines Dreiecks konstruieren gleichseitiges Dreieck mit Umkreis, Inkreis StudySmarterAbbildung 19: gleichseitiges Dreieck mit Umkreis, Inkreis

Wenn Du mehr zu der Konstruktion eines Inkreises im Dreieck erfahren möchtest, schaue gerne in der Erklärung "Inkreis eines Dreiecks konstruieren" nach.

Ankreise eines Dreiecks

Ankreise liegen von außen an einem Dreieck an.

Der Ankreis eines Dreiecks ist der Kreis , welcher außerhalb des Dreiecks ABC liegt und eine Seite des Dreiecks an einer Stelle von außen berührt, aber nicht schneidet.

Der Mittelpunkt des Ankreises ist der Schnittpunkt der zwei Außenwinkelhalbierenden und der Winkelhalbierenden des nicht anliegendem Winkel.

Es existiert an jeder Seite des Dreiecks ein Ankreis. Das bedeutet, jedes Dreieck besitzt drei Ankreise.

Ankreise konstruieren

Als Erstes zeichnest Du ein beliebiges Dreieck und beschriftetest es mit den Ecken , den Kanten und den Winkeln. Die Dreiecksseiten verlängerst Du, so weit wie möglich.

Besondere Kreise eines Dreiecks konstruieren Ankreis konstruieren StudySmarterAbbildung 20: Ankreis konstruieren

Jetzt konstruierst Du die Winkelhalbierende .

Wenn Du nicht mehr weißt, wie Du eine Winkelhalbierende konstruierst, lies Dich bei "Grundkonstruktionen" oder "Winkelhalbierende konstruieren" rein.

Besondere Kreise eines Dreiecks konstruieren Ankreis konstruieren StudySmarterAbbildung 21: Ankreis konstruieren

Danach konstruierst Du die Winkelhalbierende von dem Nebenwinkel von (). Du erhältst den Schnittpunkt der Winkelhalbierenden sowie der Außenwinkelhalbierenden und gleichzeitig den Ankreismittelpunkt.

Besondere Kreise eines Dreiecks konstruieren Ankreis konstruieren StudySmarterAbbildung 22: Ankreis konstruieren

Die letzte Winkelhalbierende von dem Nebenwinkel von () musst Du nicht konstruieren, da Du bereits einen Schnittpunkt hast. Dennoch kannst Du das Konstruieren der letzten Außenwinkelhalbierenden zur Überprüfung der Genauigkeit Deiner Konstruktion verwenden.

Besondere Kreise eines Dreiecks konstruieren Ankreis konstruieren StudySmarterAbbildung 23: Ankreis konstruieren

Um den Berührpunkt des Ankreises zu erhalten, konstruierst Du ein Lot aus dem Schnittpunkt auf die Dreiecksseite .

Wenn Du nicht mehr weißt, wie Du ein Lot konstruierst, findest Du dazu eine Erklärung in "Grundkonstruktionen".

Besondere Kreise eines Dreiecks konstruieren Ankreis konstruieren StudySmarterAbbildung 24: Ankreis konstruieren

Zum Schluss zeichnest Du nur noch einen Kreis durch den Schnittpunkt des Lots mit einer Seite und Du hast einen Ankreis eines Dreiecks konstruiert.

Besondere Kreise eines Dreiecks konstruieren Ankreis konstruieren StudySmarterAbbildung 25: Ankreis konstruieren

Wenn Du mehr zu der Konstruktion eines Ankreises am Dreieck erfahren möchtest, schaue gerne in der Erklärung "Ankreis eines Dreiecks konstruieren" nach.

Kreis im Dreieck - Das Wichtigste

  • Jedes Dreieck besitzt einen Umkreis, einen Inkreis und drei Ankreise.
  • Der Umkreis eines Dreiecks ABC ist der Kreis, welcher durch alle drei Eckpunkte verläuft. Sein Mittelpunkt ist der Schnittpunkt der drei Mittelsenkrechten der Dreiecksseiten .
  • Der Umkreismittelpunkt liegt:
    • bei rechtwinkligen Dreiecken auf der längsten Seite.
    • bei stumpfwinkligen Dreiecken außerhalb des Dreiecks.
    • bei spitzwinkligen Dreiecken innerhalb des Dreiecks.
  • Der Inkreis eines Dreiecks ist der Kreis, welcher innerhalb des Dreiecks ABC liegt und alle drei Seiten a, b und c an einer Stelle von innen berührt, aber nicht schneidet. Der Mittelpunkt des Inkreises ist der Schnittpunkt der drei Winkelhalbierenden und .
  • Der Ankreis eines Dreiecks ist der Kreis , der außerhalb des Dreiecks ABC liegt und eine Seite des Dreiecks an einer Stelle von außen berührt, aber nicht schneidet. Der Mittelpunkt des Ankreises ist der Schnittpunkt zweier Außenwinkelhalbierenden und der Winkelhalbierenden des nicht anliegenden Winkels.

Häufig gestellte Fragen zum Thema Kreis im Dreieck

Der Kreis in einem Dreieck heißt Inkreis. Der Inkreismittelpunkt ist der Schnittpunkt der Winkelhalbierenden des Dreiecks. Wenn Du den Schnittpunkt konstruierst hast, fällst Du ein Lot auf eine Dreiecksseite. Zum Schluss stichst Du in den Mittelpunkt ein und spannst Deinen Zirkel bis zum Schnittpunkt des Lots mit der Dreiecksseite auf und zeichnest den Inkreis.

Du konstruierst als erstes die Winkelhalbierenden des Dreiecks. Der Schnittpunkt der Winkelhalbierenden ist der Inkreismittelpunkt. Danach fällst Du ein Lot vom Schnittpunkt auf eine Dreiecksseite. Zum Schluss stichst Du in den Mittelpunkt ein und spannst Deinen Zirkel bis zum Schnittpunkt des Lots mit der Dreiecksseite auf und zeichnest den Inkreis. 

Der Kreis innerhalb eines Dreiecks heißt Inkreis. Der Inkreismittelpunkt ist der Schnittpunkt der Winkelhalbierenden.

Der Umkreis ist ein Kreis, welcher durch alle Eckpunkte des Dreiecks geht. Da der Umkreismittelpunkt nicht innerhalb des Dreiecks liegen muss, kann für jedes Dreieck ein Punkt gefunden werden, welcher zu allen Eckpunkten des Dreiecks den gleichen Abstand hat. 

Finales Kreis im Dreieck Quiz

Frage

Was versteht man unter dem Umkreis eines Dreiecks?

Antwort anzeigen

Antwort

Der Umkreis eines Dreiecks ist der Kreis, welcher durch alle drei Ecken des Kreises verläuft und zum Mittelpunkt den Schnittpunkt der Mittelsenkrechten hat.

Frage anzeigen

Frage

Wie findest du den Mittelpunkt des Umkreises eines Dreiecks?

Antwort anzeigen

Antwort

Der Mittelpunkt des Umkreises eines Dreiecks ist der Schnittpunkt der drei Mittelsenkrechten des Dreiecks.

Frage anzeigen

Frage

Wo liegt der Mittelpunkt M des Umkreises eines spitzwinkligen Dreiecks?

Antwort anzeigen

Antwort

Der Mittelpunkt M des Umkreises des spitzwinkligen Dreiecks liegt innerhalb des Dreiecks.

Frage anzeigen

Frage

Wo liegt der Mittelpunkt M des Umkreises eines stumpfwinkligen Dreiecks?


Antwort anzeigen

Antwort

Der Mittelpunkt M des Umkreises eines stumpfwinkligen Dreiecks liegt außerhalb des Dreiecks.

Frage anzeigen

Frage

Welche Aussagen sind richtig?

Antwort anzeigen

Antwort

Der Umkreis eines Dreiecks verläuft immer durch alle drei Ecken des Dreiecks.

Frage anzeigen

Frage

Finde die falsche Aussage.

Antwort anzeigen

Antwort

Der Mittelpunkt des Umkreises ist der Schnittpunkt der Winkelhalbierenden.

Frage anzeigen

Frage

Was ist dein erster Schritt, wenn du anfängst, den Umkreis eines Dreiecks zu zeichnen?

Antwort anzeigen

Antwort

Möchtest du den Umkreis eines Dreiecks zeichnen solltest du zunächst die Mittelsenkrechten einzeichnen.

Frage anzeigen

Frage

Wenn du den Schnittpunkt M der Mittelsenkrechten ermitteln möchtest, genügt es...

Antwort anzeigen

Antwort

... eine Mittelsenkrechte einzuzeichnen.

Frage anzeigen

Frage

Den Umkreis eines Dreiecks kannst du konstruieren mit...

Antwort anzeigen

Antwort

... einem Zirkel.

Frage anzeigen

Frage

Welche besonderen Kreise eines Dreiecks existieren?

Antwort anzeigen

Antwort

Jedes Dreieck hat einen Umkreis, einen Inkreis und drei Ankreise.

Frage anzeigen

Frage

Wo liegt der Umkreismittelpunkt bei einem rechtwinkligem Dreieck?

Antwort anzeigen

Antwort

auf der längsten Seite des Dreiecks

Frage anzeigen

Frage

Wo liegt der Umkreismittelpunkt eines stumpfwinkligen Dreiecks?

Antwort anzeigen

Antwort

außerhalb des Dreiecks

Frage anzeigen

Frage

Wie wird der Schnittpunkt der Mittelsenkrechten im Dreieck noch bezeichnet?

Antwort anzeigen

Antwort

Umkreismittelpunkt

Frage anzeigen

Frage

Durch welche Konstruktion erhältst Du die Berührpunkte des Inkreises mit den Dreiecksseiten?

Antwort anzeigen

Antwort

Ich muss ein Lot fällen.

Frage anzeigen

Frage

Was ist besonders am Umkreismittelpunkt?

Antwort anzeigen

Antwort

Der Umkreismittelpunkt hat zu jedem Eckpunkt den selben Abstand.

Frage anzeigen

Frage

Welche Eigenschaft besitzt der Inkreis?

Antwort anzeigen

Antwort

Der Inkreis ist der größte Kreis, der vollständig innerhalb des Dreiecks liegt.

Frage anzeigen
60%

der Nutzer schaffen das Kreis im Dreieck Quiz nicht! Kannst du es schaffen?

Quiz starten

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Gerade angemeldet?

Ja
Nein, aber ich werde es gleich tun

Melde dich an für Notizen & Bearbeitung. 100% for free.