Select your language

Suggested languages for you:
Log In Anmelden
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Die All-in-one Lernapp:

  • Karteikarten
  • NotizenNotes
  • ErklärungenExplanations
  • Lernpläne
  • Übungen
App nutzen

Diagonale Rechteck

Save Speichern
Print Drucken
Edit Bearbeiten
Melde dich an und nutze alle Funktionen. Jetzt anmelden
Diagonale Rechteck

Wie weit es auf einem Fußballfeld von einer Ecke zur schräg gegenüberliegenden ist, wie lang die längste gerade Linie ist, die Du in einem Raum auf den Boden malen kannst und wieso vier Personen nicht alle den gleichen Abstand zueinander haben können, erfährst Du in dieser Erklärung.

Diagonale Rechteck – Grundlagen und Eigenschaften

Das Rechteck ist eines von vielen möglichen Vierecken. Was es von anderen unterscheidet, ergibt sich aus der genauen Definition.

Das Rechteck ist ein Viereck, dessen Innenwinkel alle rechte Winkel sind.

Diagonale Rechteck Rechteck Definition StudysmarterAbbildung 1: Rechteck

Als Viereck hat es natürlich einerseits vier Ecken, die über vier Seiten miteinander verbunden sind. Eine Ecke ist über einen rechen Winkel jeweils mit zwei anderen Ecken verbunden. Mit einer der vier anderen Ecken hat es also keine direkte Verbindung. Diese führt diagonal über das Rechteck.

Wie beim Fußballfeld. Stehst Du an einer Ecke und folgst mit den Augen der Linie zu einer anderen Ecke, hast Du einerseits die hinter dem Tor, mit auf der gleichen, kurzen Seite und andererseits die auf der langen Seite. Die dritte Eckfahne ist schräg gegenüber und am weitesten weg von den drei Möglichkeiten.

Wenn Du jetzt einen Ball genau zu dieser Eckfahne schießt, fliegt dieser entlang der sogenannten Diagonalen.

Eine Diagonale eines geometrischen Objektes ist eine Strecke, die innerhalb von diesem verläuft und zwei Ecken miteinander verbindet, ohne selbst eine Seite zu sein.

Und wenn Du jetzt herausfinden willst, wie weit Du den Ball schießen musst, brauchst Du noch etwas, was sonst bei Dreiecken auftaucht: der Satz des Pythagoras.

Warum es ein Dreieck ist, siehst Du, wenn Du Dir jetzt mal das Fußballfeld von oben als Rechteck vorstellst und schaust, welche Linie der Ball hinter sich herzieht, wenn Du ihn zur anderen Ecke schießt.

Diagonale Rechteck Rechteck mit Diagonale StudysmarterAbbildung 3: Ein Rechteck mit einer eingezeichneten Diagonalen

Dann siehst Du, wie sich zwei Dreiecke bilden und gegenüber Deiner "geschossenen" Diagonalen ist ein rechter Winkel eines dieser Dreiecke. Damit kannst Du bei der Berechnung der Diagonalen so tun, als würde die Diagonale zusammen mit einer kurzen und einer langen Seite ein Dreieck bilden. Wenn Du jetzt die beiden Seiten, die eigentlich zum Rechteck gehören (also die Außenlinien des Fußballfeldes) kennst, kannst Du die dritte Seite des rechtwinkligen Dreiecks mit dem sogenannten Satz des Pythagoras berechnen.

Der Satz des Pythagoras besagt, dass in einem rechtwinkligen Dreieck das Quadrat der Hypotenuse c (die Seite gegenüber dem rechten Winkel) genauso groß ist, wie die Summe der Quadrate der anderen beiden Seiten a und b.

Diagonale Rechteck Rechtwinkliges Dreieck Pythagoras StudysmarterAbbildung 4: Rechtwinkliges Dreieck mit den Katheten a und b, sowie der Hypotenuse c

Als Formel mit diesen Seiten heißt das dann:

Diagonale Rechteck Satz des Pythagoras Studysmarter

Und damit hast Du alles an die Hand bekommen, um die Fragen oben zu beantworten und daraus viele Dinge rundum das Rechteck berechnen zu können.

Anhand der Dreiecksungleichung kannst Du dann auch feststellen, dass die Diagonale länger sein muss, als die beiden Seiten. Damit kannst Du vier Menschen, die Du in einem Rechteck aufstellst, nie so aufstellen, dass sie sich schräg gegenüberstehen, genauso weit voneinander entfernt sind, wie zwei, die nebeneinander stehen.

Diagonale Rechteck berechnen mit Formel

Wie Du die lange Seite c eines rechtwinkligen Dreiecks berechnen kannst, kannst Du genauso die Diagonale im Rechteck berechnen. Dafür musst Du der Diagonale zunächst einen Namen geben. Zum Beispiel d.

Diagonale Rechteck rechtwinkliges Dreieck im Rechteck StudysmarterAbbildung 5: Ein rechtwinkliges Dreieck entsteht beim Zeichnen der Diagonalen.

Damit ergibt sich aus dem Satz des Pythagoras schnell die Länge der Diagonale eines Rechtecks, wenn Du das c durch d ersetzt und die Wurzel ziehst.

Sind a und b Seiten eines Rechtecks und d die Diagonale, dann gilt für die Länge der Diagonalen:

Diagonale Rechteck Formel Definition Diagonale im Rechteck Studysmarter

Und dann kannst Du auch direkt die Länge Deines Schusses von einer Ecke zur schräg gegenüberliegenden berechnen.

Stell Dir also vor, Du steht an der Eckfahne. Die andere Eckfahne an der kurzen Seite, hinter dem Tor, ist weit weg und die an der langen Seite bei der anderen Mannschaft ist weit weg. Mit dem Bild von oben kannst Du jetzt die Diagonale d bestimmen.

Du hast also Dein Rechteck mit den beiden Seitenlängen a und b:

Setzt Du a und b in die Formel der letzten Definition ein, erhältst Du mit diesen beiden Werten:

Gibst Du das in den Rechner ein, erhältst Du:

Und das ergibt gerundet

Und damit weißt Du, dass Du mit tatsächlich noch weiter schießen müsstest als zu den anderen beiden Ecken.

Seitenlänge Rechteck aus Diagonale bestimmen

Was machst Du, aber wenn Du die Diagonale und eine Seite kennst, aber nicht die zweite Seite des Rechtecks?

Du misst also mit einem Maßband eine Seite eines rechteckigen Raumes und die Diagonale, kannst aber keine der anderen Seiten messen, etwa weil auf beiden Seiten ein Türrahmen im Weg ist.

Wie bereits festgestellt, kannst Du die Breite b des Raumes nicht direkt messen, weil der Türrahmen im Weg ist. Du kannst allerdings die Länge a und die Diagonale d messen.

Ausgehend vom Satz des Pythagoras, mit d als Hypotenuse und a und b als Seiten des Dreiecks, kannst Du mit Umformungen der Gleichung so umstellen, dass eine Formel für b herauskommt:

Und damit hast Du eine Gleichung, um die fehlende Länge der Seite des Bodens bestimmen zu können.

Wenn a eine bekannte Seite eines Rechtecks ist und d die Diagonale, dann kannst Du die unbekannte, zweite Seite des Rechtecks mit folgender Gleichung bestimmen:

Diagonale Rechteck Satz des Pythagoras umgestellt StudySmarter

Und jetzt kannst Du direkt die Eingangsfrage des Kapitels beantworten.

Stell Dir also vor, dass Du bei einem Raum die Länge einer Seite des Bodens bestimmen willst, diese aber nicht direkt ausmessen kannst, weil etwas im Weg steht. Einer der Gründe dafür könnte sein, dass Du danach die Menge an Tapete der Wand oder die Fläche des Bodens zu bestimmen, um Auslegeware zu kaufen.

Beim Messen der übrigen Seite a misst Du und beim Messen der Diagonale des Raumes.

Und mit den beiden Längen

kannst Du die Formel der Definition direkt benutzen:

Du erhältst dann für b:

Also ist die fehlende Seite des rechteckigen Bodens des Raumes lang.

Diagonale Rechteck Winkel berechnen

Jetzt hast Du also gesehen, wie man Diagonale und Seiten berechnen kann, wenn mindestens zwei der beteiligten Geraden bekannt sind. Wenn Du jetzt aber einen Winkel wissen möchtest, der durch die Diagonale entsteht, kannst Du das auch machen, wenn Du Dir vor Augen führst, dass es sich um zwei rechtwinklige Dreiecke handelt, von denen Du eins betrachten kannst.

Diagonale Rechteck neue Winkel entstehen durch Diagonale Definition StudysmarterAbbildung 7: Aus dem rechten Winkel entstehen zwei neue

Da das Rechteck völlig symmetrisch ist, Du es also komplett um drehst, sieht es genauso aus und Seiten, Diagonale und Winkel sind in gegenüberliegenden Ecken und an gegenüberliegenden Seiten gleich groß.

Darum ist egal, welches der Dreiecke Du betrachtest.

Zu einem Winkel eines rechtwinkligen Dreiecks, hier zum Beispiel α, hat jede der drei Seiten eine spezielle Beziehung und Bezeichnung, die Dir beim Bestimmen von Seiten und Winkeln helfen kann.

Die Hypotenuse c ist immer die Seite gegenüber vom rechten Winkel. Hier ist sie also gegenüber von Punkt C. Sie grenzt an den Winkel α und spannt diesen zusammen mit der Seite b auf.

Seite b nennt man daher die Ankathete. Übrig bleibt die Seite a, die α gegenüberliegt. Sie heißt demzufolge Gegenkathete.

Ein rechtwinkliges Dreieck ABC besteht aus zwei Katheten und der Hypotenuse.

Diagonale Rechteck Definition Rechtwinkliges Dreieck StudysmarterAbbildung 8: Rechtwinkliges Dreieck

Die Seiten heißen für Winkel α:

Hypotenuse c

Ankathete b

Gegenkathete a

wenn der rechte Winkel an Punkt C ist.

Mit diesen Bezeichnungen kannst Du jetzt Winkelfunktionen nutzen, um zum Beispiel aus den gegebenen Seiten die Größe der Winkel zu bestimmen oder aus einer Kombination von Winkel und Seiten andere Seiten zu bestimmen.

Ein Beispiel dafür ist der Sinus, für den Du die Gegenkathete und die Hypotenuse brauchst.

Bei einem rechtwinkligen Dreieck ABC ergibt sich der Sinus eines Winkels aus der Gegenkathete a und der Hypotenuse c

Diagonale Rechteck Sinus StudySmarter

Die Gegenoperation ist der Arcussinus. Wendet man diesen auf beide Seite der Gleichung an, erhält man α direkt.

Diagonale Rechteck Arcussinus StudySmarter

Auf dem Taschenrechner findest Du den arcsin als sin-1.

Alternativ benutzt Du den Kosinus, bei dem Du die am Winkel anliegende Seite nutzt und jeweils durch die Hypotenuse, also hier die Diagonale teilst.

Du kannst also jederzeit beide Winkel bestimmen, solange Du darauf achtest, welche Seite Du gegeben hast und welche Winkelfunktion Du brauchst.

Ein Winkel α, der zwischen der Diagonalen d und der Seite b liegt, kann folgendermaßen berechnet werden

Diagonale Rechteck Formel Definition Winkel Studysmarter

Auf dem Taschenrechner findest Du den arccos als cos-1.

Dafür brauchst Du den zweiten Winkel gar nicht, sondern nur zwei der Seiten. Was machst Du aber, wenn Du die Hypotenuse nicht gegeben hast, sondern nur die beiden Seiten?

Der Tangens und der Kotangens ergeben sich daraus, dass man die Gegenkathete durch die Ankathete teilt bzw. umgekehrt.

Diagonale Rechteck Tangens StudySmarter

Ein Winkel, der durch Ziehen einer Diagonalen entsteht, kannst Du also genauso berechnen wie einen Winkel in einem rechtwinkligen Dreieck. Wirfst Du einen Blick auf Abbildung 7, dann siehst Du, dass die Diagonale d genau die Stelle der Hypotenuse c einnimmt und damit kannst Du die üblichen Formeln für die Berechnung von Winkeln rechtwinkliger Dreiecke anwenden.

Ein Winkel α, der zwischen der Diagonalen d und der Seite b liegt, kann folgendermaßen berechnet werden:

Diagonale Rechteck Formel Definition Winkel Studysmarter

So könntest Du auch den zweiten Winkel berechnen, aber wenn Du den ersten schon hast, geht das auch einfacher.

Praktisch ist, dass Du nach der Bestimmung eines Winkels den zweiten einfach errechnen kannst, indem Du ihn von den 90°, die ein Innenwinkel eines Rechtecks hast, abziehst. Dann ziehst Du den bekannten Winkel einfach von den 90° des gesamten Startwinkels im Inneren des Rechtecks ab und hast das, was übrig bleibt: den zweiten Winkel β.

Bei bekanntem Winkel α, der durch Ziehen einer Diagonale im Rechteck entsteht, ergibt sich der zweite Winkel an der Diagonale folgendermaßen:

Diagonale Rechteck Formel Definition Winkel aus Winkel berechnen Studysmarter

Und diese beiden Winkel sind die einzigen Zahlen, die im Inneren des Rechtecks neben der Diagonalen auftreten. Bei schräg gegenüberliegenden Ecken liegen sie identisch zueinander, bei der nächsten Seite tauschen sie jeweils die Seite.

Jetzt stell Dir vor, Du hast den Auftrag, Bodenbelag für den oben vermessenen Raum zuzuschneiden. Der Boden soll aus zwei Sorten Teppich bestehen, die sich genau in der Diagonalen treffen, also letztendlich aus zwei zusammen gesetzten Dreiecken.

Jetzt möchtest Du für den Raum direkt zwei dreieckige Teppiche bestellen, die diesen direkt ausfüllen, um Verschnitt zu vermeiden. Eine alternative Möglichkeit dazu, die Seitenlängen alle drei zu berechnen, wäre an der Ecke den nötigen "Startwinkel" auszurechnen, in dem Du anfängst, die Teppichrolle zu zerschneiden. Wenn Du das dann gerade weiter schneidest, kommst Du genau in der anderen Ecke an. Jetzt musst Du nur noch berechnen, wie groß der Winkel ist.

Von oben hast Du die Seitenlängen des Rechtecks "Boden" ausgemessen:

Und jetzt hast Du oben eine Formel, in die Du nur beide Werte eintragen und ausrechnen musst:

Würdest Du den Winkel von der anderen Seite anzeichnen wollen, kannst Du den jetzt schnell aus α berechnen:

Und jetzt kannst Du Dir sogar aussuchen, von welcher Seite Du den Winkel bestimmst.

Diagonale Rechteck Aufgaben und Beispiele

Beispiele aus der Praxis hast Du oben schon einige bekommen, also kannst Du jetzt mal ausprobieren, ob Du die Formeln auch direkt auf mathematische Gleichungen anwenden kannst.

Aufgabe 1

Bestimme die Diagonale d von einem Rechteck mit den Seiten:

Lösung

Oben hast Du die Formel zur Bestimmung der Diagonalen und darin sind die beiden Seitenlängen schnell eingesetzt:

Die Diagonale bestimmt hast Du ja jetzt einmal. Im Folgenden ist sie gegeben, aber eine Seite fehlt.

Aufgabe 2

Berechne die Länge der Seite a in einem Rechteck mit der Seite und der diagonalen Länge .

Lösung

Anders als bei der Addition der Quadrate der beiden Seitenlängen ziehst Du jetzt das Quadrat der Seite vom Quadrat der Diagonalen ab. Die Formel dafür findest Du oben.

Und zum Abschluss noch kannst Du einmal die beiden durch eine Diagonale entstehenden Winkel eines Rechtecks bestimmen:

Aufgabe 3

Bestimme die beiden Winkel α und β für ein Rechteck mit einer Seitenlänge von und einer Diagonale

Lösung

Da die Seite gegeben ist, die an den Winkel α grenzt, nutzt Du hier direkt die Formel mit dem Cosinus, um α zu bestimmen.

Und daraus bestimmt sich der zweite Winkel durch eine einfache Subtraktion:

Diagonale Rechteck - Das Wichtigste

Häufig gestellte Fragen zum Thema Diagonale Rechteck

Eine Diagonale in einem Rechteck ist eine Gerade, die zwei (gegenüberliegende) Ecken miteinander verbindet. (Die also keine Seite ist.)

d2=a2+b2
Wie die Hypotenuse in einem rechtwinkligen Dreieck berechnet sich die Diagonale aus dem Satz des Pythagoras.  

Die Diagonale eines Rechtecks ergibt sich aus der Wurzel der Summe der Quadrate der beiden Seiten. 

Der Tangens des Winkels Alpha der in einem Dreieck aus der Konstruktion der Diagonale entsteht.
Dabei ist der Tanges von Alpha = b/a

Finales Diagonale Rechteck Quiz

Frage

Was macht ein Rechteck aus?

Antwort anzeigen

Antwort

  • Vier Ecken
  • Vier rechte Winkel


Daraus ergibt sich:

Vier Seiten, von denen jeweils zwei gleich lang sind.

Frage anzeigen

Frage

Was unterscheidet eine Diagonale von einer Seite?

Antwort anzeigen

Antwort

Die Seite verläuft am Rand und begrenzt das geometrische Objekt.

Die Diagonale hingegen verläuft durch das Objekt und verbindet zwei Ecken miteinander.

Frage anzeigen
Mehr zum Thema Diagonale Rechteck
60%

der Nutzer schaffen das Diagonale Rechteck Quiz nicht! Kannst du es schaffen?

Quiz starten

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Melde dich an für Notizen & Bearbeitung. 100% for free.