Select your language

Suggested languages for you:
Log In Anmelden
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Die All-in-one Lernapp:

  • Karteikarten
  • NotizenNotes
  • ErklärungenExplanations
  • Lernpläne
  • Übungen
App nutzen

Flächeninhalt Raute

Save Speichern
Print Drucken
Edit Bearbeiten
Melde dich an und nutze alle Funktionen. Jetzt anmelden
Flächeninhalt Raute

Du hast bestimmt schon öfter Karten gespielt und Dich dadurch vielleicht auch schon einmal gefragt, welche Form etwa das Karo Ass hat. Das Karo Ass hat die Form einer Raute. Was das genau ist und wie Du zum Beispiel den Flächeninhalt einer Raute berechnen kannst, erfährst Du in diesem Artikel.

Flächeninhalt Raute Karo StudySmarter

Du hast richtig Lust darauf, das Thema rund um die Raute zu meistern? Dann bist Du hier genau richtig!

Die Raute – Grundlagenwissen

Die Raute, auch Rhombus genannt, ist eine viereckige Figur in der Geometrie, welche sich durch besondere Eigenschaften von anderen Vierecken unterscheidet.

Eine Raute hat vier Winkel und vier gleich lange Seiten, wobei die jeweils gegenüberliegenden Seiten parallel und die gegenüberliegenden Winkel gleich groß sind.

Flächeninhalt Raute Seiten und Winkel StudySmarter

Eine vollständig beschriftete Raute inklusive der Winkel und Diagonalen, welche zugleich die Symmetrieachsen darstellen, sieht beispielsweise wie in Abbildung 1 aus.

Flächeninhalt Raute Beschriftung Raute StudySmarterAbbildung 1: Die Raute - Beschriftung

Sind nicht nur die zwei gegenüberliegenden Winkel der Raute gleich groß, sondern alle vier Winkel, so handelt es sich um eine spezielle Raute: ein gedrehtes Quadrat.

Doch wie kann nun die Fläche dieser Figur bestimmt werden?

Flächeninhalt Raute – Herleitung und Formel

Der Flächeninhalt einer geometrischen Figur hängt von dessen Form ab und gibt an, wie groß diese ist. In der Mathematik wird der Flächeninhalt mit einem großen A gekennzeichnet.

Du musst in einer Hausaufgabe den Flächeninhalt einer Raute bestimmen? Dazu hast Du verschiedene Möglichkeiten. Kann eine maßstäbliche Skizze angefertigt werden, so kannst Du die Fläche des Rechtecks manchmal auch durch Abzählen bestimmen. Wie das geht? Sieh Dir dazu das folgende Beispiel an.

Aufgabe 1

Wie groß ist die Fläche der Raute, wenn dessen Diagonale (Längeneinheiten) und die Diagonale lang sind? Ein Kästchen hat hierbei eine Fläche von .

Der Ausdruck FE beschreibt die Größe der Fläche in Flächeneinheiten. Dabei wird keine konkrete Längeneinheit wie beispielsweise cm, mm oder m festgelegt.

Flächeninhalt Raute Fläche StudySmarterAbbildung 2: Die Raute

Lösung – Abzählen

Die Fläche A eines türkisen Quadrats ist in dieser Aufgabe vorgegeben. Um die Fläche der gesamten blauen Raute zu ermitteln, kann zunächst abgezählt werden, wie viele dieser türkisen Quadrate in die blaue Raute hineinpassen.

Hierfür müssen jene Teile gefunden werden, welche zusammen ein vollständiges Quadrat ergeben.

Flächeninhalt Raute Fläche händisch abzählen StudySmarterAbbildung 3: Fläche - Händisch abzählen

Insgesamt sind 12 Quadrate im blauen Rechteck möglich. Um die Fläche A des Rechtecks auch in FE angeben zu können, muss nun die Anzahl der Quadrate mit der Fläche dieser Quadrate multipliziert werden.

Somit beträgt die Fläche der gesamten Figur .

Nicht immer ist jedoch die Fläche eines kleinen Quadrats gegeben und die Fläche einer Raute lässt sich nicht immer über Abzählen bestimmen. Deshalb kann der Flächeninhalt auch über eine Formel berechnet werden.

Flächeninhalt Raute – Formel mit Diagonalen

Für jede geometrische Figur gibt es für die Berechnung der Fläche eine konkrete Formel, mit welcher Du diese berechnen kannst. Bei einer Raute benötigst Du dazu lediglich die beiden Diagonalen. Wie in Abbildung 4 zu sehen ist, können diese allgemein als Diagonalen e und f bezeichnet werden.

Flächeninhalt Raute Raute StudySmarterAbbildung 4: Die Raute

Für eine Raute gilt somit:

Der Flächeninhalt einer Raute mit der Seitenlänge a und den Diagonalen e und f wird wie folgt berechnet:

Flächeninhalt Raute Flächenformel StudySmarter

Wenn , dann:

Flächeninhalt Raute Formel Fläche StudySmarter

Die beiden Diagonalen werden multipliziert, welches ein Rechteck ergibt. Anschließend wird dieses durch zwei dividiert, da, wie in der folgenden Abbildung ersichtlich, die Fläche der Raute genau die Hälfte der Rechtecksfläche darstellt.

Flächeninhalt Raute Rechteck vs. Raute StudySmarterAbbildung 5: Rechteck vs. Raute

Aufgrund des Kommutativgesetzes kannst Du die beiden Diagonalen auch vertauschen und Flächeninhalt Raute Flächenformel StudySmarterverwenden.

Flächeninhalt Raute – Formel mit Grundseite und Höhe

Wie folgende Abbildung aufzeigt, stellt eine Raute zugleich ein Parallelogramm dar.

Flächeninhalt Raute Raute vs. Parallelogramm StudySmarterAbbildung 6: Raute vs. Parallelogramm

Dies bedeutet folglich, dass auch dessen Formel für die Berechnung der Fläche verwendet werden kann.

Die Fläche einer Raute kann ebenso mithilfe der Flächenformel des Parallelogramms berechnet werden:

Flächeninhalt Raute Flächenformel StudySmarter

Zeit für die Anwendung dieser Formeln in konkreten Beispielen.

Flächeninhalt Raute berechnen – Erklärung & Aufgaben

Ergibt sich bei der Berechnung der obigen Aufgabe 1 mit der Formel die gleiche Fläche?

Aufgabe 2

Wie groß ist die Fläche der Raute, wenn dessen Diagonale f (Längeneinheiten) und die Diagonale elang sind?

Flächeninhalt Raute Fläche StudySmarterAbbildung 7: Die Raute

Lösung

Statt dem Abzählen von Kästchen, kann hier direkt die Formel zur Berechnung des Flächeninhalts angewandt werden. Es gilt:

Flächeninhalt Raute Flächenformel StudySmarter

Durch Einsetzen der Werte für die Diagonalen e und f ergibt sich:

Auch über die Berechnung mithilfe der Formel ergibt sich wieder für den Flächeninhalt der blauen Raute eine Fläche von .

Wie in der Definitionsformel ersichtlich, kann die Fläche einer Raute, welche zwei gleich lange Diagonalen aufweist, mit der Flächenformel des Quadrats Flächeninhalt Raute Flächenformel StudySmarter berechnet werden. Hierzu folgendes Beispiel:

Aufgabe 3

Ein Verkehrsschild mit gleich langen Seiten sieht wie folgt aus:

Berechne die Fläche des Verkehrsschildes!

Lösung

Die Berechnung der Fläche der Figur lautet wie folgt:

Somit beträgt die Fläche des Schildes.

Merke, dass Längeneinheiten zu einer Flächeneinheit werden, indem diese mit einer " ² " versehen werden!

Werden den Seiten konkrete Längeneinheiten zugewiesen, so kann die Fläche ebenfalls über eine der beiden Formeln berechnet werden, je nach Ausprägungsform der Raute.

Für die Berechnung der Fläche der Raute sind sowohl die Diagonale e als auch die Diagonale f zwingend notwendig, außer wenn es sich um ein gedrehtes Quadrat handelt. Was aber, wenn die jeweils benötigten Werte nicht in der Aufgabe nicht gegeben sind?

Flächeninhalt Raute berechnen – Mit Seite, Diagonale und Höhe

Folgende zwei Beispiele werden verdeutlichen, wie zum einen mithilfe der Diagonalen und zum anderen mithilfe der Seite und der Höhe die Fläche einer Raute berechnet werden kann.

Aufgabe 4

Die Fläche der Wiese mit der Form einer Raute soll berechnet werden. Grundsätzlich wird davon ausgegangen, dass jede der 50 Kühe mindestens einen Platz von haben sollte. Berechne, ob die Wiese mit folgenden Angaben genügend Platz für alle Kühe hat oder ob dieser zu klein ist.

Welche Fläche muss der Bauer einzäunen?

Lösung

Die Grasfläche kann mithilfe der Formel berechnet werden. Dazu kannst Du zunächst die Diagonalen bestimmen. So gilt beispielsweise:

Jetzt musst Du nur noch die Zahlenwerte in die Formel zur Berechnung des Flächeninhalts eines Rechtecks einsetzen und ausrechnen.

Als Lösung für diese Aufgabe erhalten wir also eine Fläche der Wiese von .

Nun auf zum Beispiel zum Thema der Flächenberechnung mithilfe der Seiten und der Höhe.

Aufgabe 5

Eine Raute weist folgende Werte auf:

Berechne den Flächeninhalt der Figur!

Lösung

Da es sich bei der Figur der Raute zugleich um ein Parallelogramm handelt, können wir für dieses Beispiel die Flächenformel des Parallelogramms verwenden. Somit müssen lediglich die Werte der Seite und der Höhe in die Flächenformel eingesetzt werden. Dies sieht wie folgt aus:

Die Fläche der Raute beträgt .

Es ist wichtig aufzuzeigen, welche weiteren Möglichkeiten mithilfe der Winkel bestehen, die Diagonalen zu berechnen, wodurch im Anschluss daran die Fläche der Figur berechnet werden kann.

Flächeninhalt Raute berechnen – Mit Seite und Winkel

Wenn bei einer Hausübung die Seite a und der Winkel Alpha gegeben sind, können die Diagonalen mithilfe der Winkelfunktionen berechnet werden.

Die Diagonalen einer Raute können mithilfe der Seite der Raute und einem Winkel über folgende Formel berechnet werden:

Flächeninhalt Raute Winkelfunktionen StudySmarter

Sollte nur der Winkel Beta gegeben sein, berechne daraus wie folgt den Winkel Alpha:

Nun wird die Berechnung der Diagonalen mithilfe der angeführten Formel anhand eines kurzen Beispiels verdeutlicht.

Aufgabe 6

Eine Raute weist folgende Werte auf:

Folgende Skizze soll den Sachverhalt verdeutlichen:

Flächeninhalt Raute Fläche berechnen mit Winkel StudySmarterAbbildung 10: Fläche berechnen mit Winkel

Lösung

Um zuerst die Diagonalen berechnen zu können, müssen die Werte lediglich in die jeweiligen oben angeführten Formeln eingesetzt werden. Dies sieht wie folgt aus:

Als Nächstes wird die Diagonale f berechnet.

Somit beträgt die Diagonale und die Diagonale. Nun kann mithilfe der beiden Diagonalen die Fläche berechnet werden.

Die Raute weist eine Fläche von auf.

Abschließend noch ein kurzer Abschnitt, welcher aufzeigt, wie mithilfe des Umfangs und einer Diagonale die Fläche berechnet werden kann.

Flächeninhalt Raute berechnen – Mit Umfang und Diagonale

Der Umfang einer Raute kann anhand der Seitenlänge a bestimmt werden, wobei allgemein gilt:

Interessiert am Artikel zum Umfang eines Rechtecks? Dann sieh doch gleich einmal in den Artikel rein.

Inwiefern hilft Dir der Umfang bei der Flächenberechnung eines Rechtecks? Zeit für ein Beispiel.

Es muss gesagt werden, dass die Ermittlung der Diagonalen und die daraus folgende Flächenberechnung auf fortgeschrittenes mathematisches Wissen beruhen. Befindest Du Dich bereits in der neunten Klasse oder höher, dann sieh Dir unbedingt die folgende Vertiefung an.

Aufgabe 7

Eine Raute weist folgende Größen auf:

Berechne die Diagonale f und im Anschluss daran die Fläche der Raute.

Lösung – Ermittlung der Diagonale

Als Erstes wird die Variable a aus dem Umfang berechnet, indem die Umfangsformel nach a freigestellt und gelöst wird.

Wie in Abbildung 11 erkannt werden kann, teilen die Diagonalen die Figur in vier gleich große rechtwinklige Dreiecke. Nun wird eines hiervon ausgewählt und mithilfe des Satzes nach Pythagoras die fehlende Seite berechnet.

Möchtest Du mehr zum Thema Satz des Pythagoras erfahren, sieh Dir unbedingt den Beitrag dazu auf StudySmarter an!

Flächeninhalt Raute Satz des Pythagoras StudySmarterAbbildung 11: Die Raute - Satz des Pythagoras

Das in Abbildung 11 markierte rechtwinklige Dreieck hat nun die Seitenlängen , und a. Um mithilfe des Lehrsatzes nach Pythagoras die Diagonale berechnen zu können, wird folgende Formel verwendet:


Die Diagonalen e und f einer Raute können mithilfe folgender Formeln berechnet werden:

Flächeninhalt Raute Formel für die Diagonalen StudySmarter

Um mehr über die Herleitung dieser Formel zu erfahren, sieh Dir den Artikel "Diagonale Raute" auf StudySmarter an!

Im nächsten Schritt werden die Werte anstelle der Variablen in die Formel für f eingesetzt und die Gleichung gelöst.

Somit beträgt die Länge der Diagonale. Jetzt kann mithilfe der Werte der beiden Diagonalen die Fläche bestimmt werden.

Die Fläche der Raute beträgt .

Sollte nur die Seitenlänge a einer Raute gegeben sein und es sich hierbei nicht um ein Quadrat handelt, wird genau gleich vorgegangen, mit dem einzigen Unterschied, dass K1 und K2 beide jeweils darstellen.

Flächeninhalt Raute – Das Wichtigste auf einen Blick

  • Eine Raute erkennst Du daran, dass sie vier Winkel, vier Ecken und vier gleich lange Seiten aufweist.
  • Die Diagonalen der Raute können unterschiedlich lang sein.
  • Die allgemeine Flächenformel der Raute lautet:
  • Die Flächenformel der Raute lautet bei gleich langen Diagonalen:
  • Die Flächenformel des Parallelogramms kann ebenso verwendet werden:
  • Die Diagonale e kann bei gegebener Seitenlänge a und Diagonale f berechnet werden mit:
  • Die Diagonale f kann bei gegebener Seitenlänge a und Diagonale e berechnet werden mit:
  • Die Diagonalen werden mithilfe des Winkels berechnet:

Häufig gestellte Fragen zum Thema Flächeninhalt Raute

Die allgemeine Flächenformel für die Raute lautet A = (e ⋅  f) : 2. Für eine Raute mit gleich langen Diagonalen lautet die Formel A = a².

Umfang: U = 4 ⋅ a

Fläche: A = (e ⋅  f) : 2          oder        A = a² bei einer Raute mit gleich langen Diagonalen

Bei einer Raute mit gleichen Werten für e und f wird a mit der Formel  a = √A berechnet. Aus dem Umfang kann die Seitenlänge a mit folgender Formel berechnet werden: a = U/4

Finales Flächeninhalt Raute Quiz

Frage

Was ist der Flächeninhalt einer Raute?

Antwort anzeigen

Antwort

Der Flächeninhalt eines Rechtecks ist ein Maß für die Größe einer Fläche. Er ist abhängig von der Länge der Diagonalen der Raute, welche als e und f bezeichnet werden.


Frage anzeigen

Frage

In welcher Einheit wird der Flächeninhalt angegeben?

Antwort anzeigen

Antwort

Eine Fläche wird meistens in mm² (Quadratmillimeter), cm² (Quadratzentimeter), m² (Quadratmeter) oder km² (Quadratkilometer) angegeben.

Frage anzeigen

Frage

Was ist der Unterschied zwischen einem Quadrat und einer Raute?




Antwort anzeigen

Antwort

Bei einem Quadrat sind im Gegensatz zur Raute alle Winkel immer genau 90°. 

Frage anzeigen

Frage

Wie viele Symmetrieachsen hat eine Raute?



Antwort anzeigen

Antwort

Eine Raute hat genau zwei Symmetrieachsen, nämlich die beiden Diagonalen!

Frage anzeigen

Frage

Wie wird der Flächeninhalt mathematisch abgekürzt?


Antwort anzeigen

Antwort

Mit dem Großbuchstaben A

Frage anzeigen

Frage

Welche Eigenschaften lassen sich der Raute zuordnen?

Antwort anzeigen

Antwort

Sie zählt zu der Kategorie der Vierecke

Frage anzeigen

Frage

Was ist der Unterschied zwischen dem Umfang und dem Flächeninhalt?




Antwort anzeigen

Antwort

Die eingeschlossene Fläche beschreibt den Flächeninhalt, während der Umfang das äußerlich Umschließende angibt (Sprich die Länge des Randes der Figur).


Frage anzeigen

Frage

Berechne den Flächeninhalt der Raute mit gleich langen Diagonalen mit der Seitenlänge a = 9 cm!


Antwort anzeigen

Antwort

A = a · a


A = 9 cm ·  9 cm


A = 81 cm²

Frage anzeigen

Frage

Was unterscheidet eine Raute von einem Drachenviereck?



Antwort anzeigen

Antwort

Beim Drachenviereck sind jeweils zwei Seiten gleich lang 

Frage anzeigen

Frage

Überprüfe folgende Aussagen!

Antwort anzeigen

Antwort

Alle Winkel der Raute müssen kleiner als 90° sein

Frage anzeigen
Mehr zum Thema Flächeninhalt Raute
60%

der Nutzer schaffen das Flächeninhalt Raute Quiz nicht! Kannst du es schaffen?

Quiz starten

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Gerade angemeldet?

Ja
Nein, aber ich werde es gleich tun

Melde dich an für Notizen & Bearbeitung. 100% for free.