Select your language

Suggested languages for you:
Log In Anmelden
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Die All-in-one Lernapp:

  • Karteikarten
  • NotizenNotes
  • ErklärungenExplanations
  • Lernpläne
  • Übungen
App nutzen

Höhe Dreieck

Save Speichern
Print Drucken
Edit Bearbeiten
Melde dich an und nutze alle Funktionen. Jetzt anmelden
Höhe Dreieck

In diesem Artikel erfährst du alles, was du zur Höhe eines Dreiecks wissen musst. Das Thema "Höhe des Dreiecks" ist inhaltlich dem Themengebiet Geometrie im Fach Mathematik zuzuordnen.

Um den Inhalt dieses Artikels vollständig verstehen zu können, ist es wichtig, dass du mit dem Thema Lot in der Mathematik und dem Sinussatz vertraut bist. Falls du nicht mehr genau wissen solltest, was es mit dem Lot und dem Sinussatz auf sich hat, solltest du zunächst lieber noch einmal einen Blick in die beiden dazugehörigen Erklärungstexte werfen.

Höhe im rechtlichen Dreieck

Allgemein kann dies wie folgt definiert werden:

Die Höhe eines Dreiecks ist das Lot einer Dreiecksseite oder deren Verlängerung, das durch dengegenüberliegenden Eckpunkt verläuft.

Um die Höhe eines Dreiecks einzuzeichnen, fällt man das Lot vom Eckpunkt auf die gegenüberliegende Dreiecksseite oder deren Verlängerung.

Da jedes Dreieck drei Seiten (Seite a, Seite b und Seite c) und drei Eckpunkte (Eckpunkt A, Eckpunkt B und Eckpunkt C) besitzt, hat es auch drei Höhen.

Durch das Einzeichnen einer Höhe des Dreiecks, wird das Dreieck bzw. seine Verlängerung in zwei rechtwinklige Dreiecke unterteilt. Bei der Seite, die sich die entstehenden Dreiecke teilen, handelt es sich dabei um die Höhe.

Das ist die Voraussetzung dafür, dass zur Berechnung der Höhe der Sinussatz verwendet werden kann. Ein Beispiel dafür siehst du hier:

Höhe Dreieck, Rechtwinkliges Dreieck, StudySmarterAbbildung 1: Rechtwinkliges Dreieck

Das große rechtwinklige Dreieck wird durch das Einzeichnen der Höhe in zwei kleinere, ebenfalls rechtwinklige Dreiecke unterteilt.

Die Höhen eines Dreiecks werden mit dem Buchstaben h bezeichnet. Der Buchstabe im Index steht dabei für die Seite des Dreiecks, deren Höhe angegeben wird. Die drei Höhen des Dreiecks werden also als , und bezeichnet.

Der Punkt, an dem die Höhe die gegenüberliegende Seite schneidet, heißt Höhenfußpunkt.

Der Höhenfußpunkt ist der Punkt, an dem sich die Höhe und die Seite a schneiden.

Der Höhenfußpunkt ist der Punkt, an dem sich die Höhe und die Seite b schneiden.

Der Höhenfußpunkt ist der Punkt, an dem sich die Höhe und die Seite c schneiden.

Die drei Höhen des Dreiecks schneiden sich immer in einem Punkt. Dieser Punkt wird Höhenschnittpunkt H genannt. Je nachdem, zu welcher Dreiecksart das Dreieck gehört, liegt der Höhenschnittpunkt außerhalb des Dreiecks oder auf einem Eckpunkt.

Höhe Dreieck berechnen

Nachdem du nun alle theoretischen Grundlagen kennst, die du zum Verständnis der Höhe eines Dreiecks benötigst, lernst du als nächstes, wie die Höhe eines Dreiecks gezeichnet und berechnet wird.

Je nach Dreiecksart gibt es Besonderheiten im Hinblick auf die Zeichnung und Berechnung der Höhe des Dreiecks. Deshalb wird die Höhe des Dreiecks für ein spitzwinkliges Dreieck, ein stumpfwinkliges Dreieck und ein rechtwinkliges Dreieck jeweils einzeln im Detail behandelt.

Höhe Dreieck – Spitzwinkliges Dreieck

Jedes Dreieck hat genau drei Innenwinkel. Die Summe der Innenwinkel eines Dreiecks beträgt 180°.

Die Eckpunkte A, B und C des Dreiecks bilden die Scheitelpunkte der Innenwinkels.

Dabei gilt: Am Eckpunkt A befindet sich der Winkel , am Eckpunkt B der Winkel und am Eckpunkt C der Winkel .

Bei einem spitzwinkligen Dreieck sind alle drei Innenwinkel des Dreiecks kleiner als 90°.

In der folgenden Abbildung siehst du ein Beispiel für ein spitzwinkliges Dreieck:

Höhe Dreieck, Spitzwinkliges Dreieck, StudySmarterAbbildung 2: Spitzwinkliges Dreieck

Wenn du in dieses Dreieck nun die drei Höhen , und einzeichnest, sieht das Dreieck folgendermaßen aus:

Höhe Dreieck, Spitzwinkliges Dreieck mit Höhen, StudySmarterAbbildung 3: Spitzwinkliges Dreieck mit Höhen

Wie du erkennen kannst, liegt der Höhenschnittpunkt H bei einem spitzwinkligen Dreieck innerhalb des Dreiecks:

Höhe Dreieck, Spitzwinkliges Dreieck mit Höhenschnittpunkten, StudySmarterAbbildung 4: Spitzwinkliges Dreieck mit Höhenschnittpunkt

Durch das Einzeichnen einer Höhe, dass in je zwei rechtwinklige Dreiecke unterteilt wird, können die Höhen mit dem Sinussatz berechnet werden. Für jede der drei Höhen gibt es daher zwei Möglichkeiten sie zu berechnen. Dafür musst du nur die entsprechenden Seitenlängen bzw. Winkelgrößen kennen.

Für die Höhe gilt: und

Für die Höhe gilt: und

Für die Höhe gilt: und

Eine besondere Form des spitzwinkligen Dreiecks ist das gleichseitige Dreieck. Bei einem gleichseitigen Dreieck sind die Seiten a, b und c gleich lang. Außerdem sind die drei Innenwinkel des Dreiecks mit einer Winkelgröße von 60° gleich groß.

Es gilt also: und

Deshalb sind auch die drei Höhen eines gleichseitigen Dreiecks gleich hoch:

Es reicht also eine Höhe zu berechnen, um die Länge aller drei Höhen zu ermitteln.

Hier siehst du ein Beispiel für ein gleichseitiges Dreieck:

Höhe Dreieck, Gleichseitiges Dreieck, StudySmarterAbbildung 5: Gleichseitiges Dreieck

Zeichnest du nun die drei Höhen und den dazugehörigen Höhenschnittpunkt ein, ergibt sich folgendes Bild:

Höhe Dreieck, Gleichseitiges Dreieck mit Höhen, StudySmarterAbbildung 6: Gleichseitiges Dreieck mit Höhen

Merke:

Die Höhen des Dreiecks können mithilfe des Sinussatzes berechnet werden.

Der Höhenschnittpunkt H liegt bei einem spitzwinkligen Dreieck innerhalb des Dreiecks.

Höhe Dreieck – Stumpfwinkliges Dreieck

Bei einem stumpfwinkligen Dreieck ist einer der Innenwinkel größer als 90°.

In der folgenden Abbildung siehst du ein Beispiel für ein stumpfwinkliges Dreieck, bei dem der Winkel ein stumpfer Winkel ist:

Höhe Dreieck, Stumpfwinkliges Dreieck, StudySmarterAbbildung 7: Stumpfwinkliges Dreieck

Um in dieses Dreieck die drei Höhen einzeichnen zu können, musst du zwei der Dreiecksseiten verlängern. Dabei handelt es sich um die beiden Dreiecksseiten, zwischen denen der stumpfe Winkel liegt.

Wenn du in dieses Dreieck nun die drei Höhen , und einzeichnest, sieht das Dreieck folgendermaßen aus:

Höhe Dreieck, Stumpfwinkliges Dreieck mit Höhen, StudySmarterAbbildung 8: Stumpfwinkliges Dreieck mit Höhen

Wie du erkennen kannst, liegt der Höhenschnittpunkt H bei einem stumpfwinkligen Dreieck außerhalb des Dreiecks:

Höhe Dreieck, Stumpfwinkliges mit Höhenschnittpunkten, StudySmarterAbbildung 9: Stumpfwinkliges Dreieck mit Höhenschnittpunkten

Für die Berechnung der Höhen gelten die gleichen Formeln wie bei spitzwinkligen Dreiecken.

Für die Höhe gilt: und

Für die Höhe gilt: und

Für die Höhe gilt: und

Merke:

Die Höhen des Dreiecks können mithilfe des Sinussatzes berechnet werden.

Der Höhenschnittpunkt H liegt bei einem stumpfwinkligen Dreieck außerhalb vom Dreieck.

Höhe Dreieck – Rechtwinkliges Dreieck

Bei einem rechtwinkligen Dreieck ist – wie der Name des Dreiecks bereits verrät – einer der Innenwinkel des Dreiecks ein rechter Winkel. In der folgenden Abbildung siehst du ein Beispiel für ein rechtwinkliges Dreieck:

Höhe Dreieck, Rechtwinkliges Dreieck, StudySmarterAbbildung 10: Rechtwinkliges Dreieck

Dadurch, dass es sich bei dem Winkel am Eckpunkt C um einen rechten Winkel handelt, stehen Seite a und Seite b des Dreiecks in einem rechten Winkel zueinander. Die Seite a ist demnach ein Lot der Seite b und die Seite b ist ein Lot der Seite a. Daher gilt für die Höhen und :

und

Bei einem rechtwinkligen Dreieck gibt es deshalb nur eine Höhe, die man berechnen muss. Diese Höhe ist das Lot derjenigen Seite des Dreiecks, die sich gegenüber vom rechten Winkel befindet.

Die Seite eines rechtwinkligen Dreiecks, die gegenüber von rechten Winkel liegt, heißt Hypotenuse. Sie ist die längste Seite eines rechtwinkligen Dreiecks.

Die anderen beiden Seiten des Dreiecks werden Katheten genannt.

Wenn du diese Höhe nun in das Dreieck von eben einzeichnest, ergibt sich dieses Bild:

Höhe Dreieck, Rechtwinkliges Dreieck mit Höhe, StudySmarterAbbildung 11: Rechtwinkliges Dreieck mit Höhe

Wenn du dir den Schnittpunkt der drei Höhen genauer anschaust, fällt dir sicher schnell die Besonderheit vom Höhenschnittpunkt eines rechtwinkligen Dreiecks auf: Der Höhenschnittpunkt H liegt genau auf dem Eckpunkt, an dessen Winkel sich der rechte Winkel befindet.

Um die Höhe zu berechnen, kannst du auch bei rechtwinkligen Dreiecken den Sinussatz benutzen.

Für die Höhe gilt: und

Merke:

Bei einem rechtwinkligen Dreieck gibt es nur eine Höhe, die du berechnen musst. Diese bezieht sich auf die Seite des Dreiecks, die gegenüber vom rechten Winkel liegt. Diese Seite nennt man Hypotenuse. Die Höhe lässt sich mithilfe des Sinussatzes berechnen.

Bei den anderen beiden Höhen handelt es sich um die an den rechten Winkel angrenzenden Dreiecksseiten.

Der Höhenschnittpunkt H liegt bei einem rechtwinkligen Dreieck genau auf dem Eckpunkt, an dessen Winkel sich der rechte Winkel befindet.

Höhe Dreieck berechnen – Übungsaufgaben

Du weißt jetzt in der Theorie, wie man die Höhen eines Dreiecks berechnet. Probiere es doch direkt mal an den beiden Übungsaufgaben aus, ob du das Gelernte wirklich verstanden hast!

Höhe Dreieck berechnen – Aufgabe 1

Aufgabe

Bestimme die drei Höhen des Dreiecks ABC. Die Länge der Seite a und der Seite b sowie die Winkelgrößen der Winkel und sind angegeben:

Lösung

Da die Summe der Innenwinkel eines Dreiecks 180° beträgt, kannst du die Größe des Winkels berechnen:

Da alle Winkel kleiner als 90° sind, handelt es sich bei diesem Dreieck um ein spitzwinkliges Dreieck.

Die drei Höhen eines spitzwinkligen Dreiecks müssen einzeln mithilfe des Sinussatzes berechnet werden:

Höhe Dreieck berechnen – Aufgabe 2

Aufgabe

Bestimme die drei Höhen des Dreiecks ABC. Gib außerdem an, wo sich der Höhenschnittpunkt H befindet.

Die Längen der Seite a, der Seite b und der Seite c sowie die Winkelgrößen der Winkel und sind angegeben:

Lösung

Da die Summe der Innenwinkel eines Dreiecks 180° beträgt, kannst du die Größe des Winkels berechnen:

Die Größe des Winkels beträgt demnach 90°. Bei dem vorliegenden Dreieck handelt sich also um ein rechtwinkliges Dreieck.

Zur Erinnerung: Der Höhenschnittpunkt H liegt bei einem rechtwinkligen Dreieck genau auf dem Eckpunkt, an dessen Winkel sich der rechte Winkel befindet. Deshalb liegt in diesem Beispiel der Höhenschnittpunkt genau auf dem Eckpunkt C.

Du musst nun nur noch die Höhe berechnen, die sich auf die Seite c, also auf die Hypotenuse, bezieht. Das ist die Höhe .

Die anderen beiden Höhen sind gleichzeitig die Seiten a und b des Dreiecks. Für die Höhen und gilt:

Zum Schluss bestimmst du noch die die Höhe mithilfe des Sinussatzes. Es gibt dabei zwei Möglichkeiten zu berechnen:

Für gilt:

Zur Kontrolle:

Höhe Dreieck - Das Wichtigste auf einen Blick

  • Die Höhe eines Dreiecks ist das Lot einer Dreiecksseite oder deren Verlängerung, das durch den gegenüberliegenden Eckpunkt verläuft.
  • Der Punkt, an dem sich die drei Höhen eines Dreiecks schneiden, heißt Höhenschnittpunkt H. Je nach Dreiecksart liegt dieser Punkt innerhalb vom Dreieck, außerhalb vom Dreieck oder auf einem der drei Eckpunkte.
  • Die Höhen des Dreiecks können mit dem Sinussatz berechnet werden.

Häufig gestellte Fragen zum Thema Höhe Dreieck

Die Höhe eines Dreiecks kann mithilfe des Sinutzsatzes berechnet werden. Das liegt daran, dass das Dreieck durch das Einzeichnen der Höhe in zwei kleinere, rechtwinklige Dreiecke geteilt wird. 

Die Höhe eines Dreiecks ist das Lot einer Dreiecksseite oder deren Verlängerung, das durch den gegenüberliegenden Eckpunkt verläuft. 

Jedes Dreieck hat drei Höhen. 

Die Höhe in einem gleichseitigen Dreieck kann mithilfe des Sinussatzes berechnet werden. Die Besonderheit eines gleichseitigen Dreiecks liegt darin, dass die drei Dreiecksseiten gleich lang sind und die drei Innenwinkel des Dreiecks alle eine Winkelgröße von 60° haben. Daher haben die drei Höhen des Dreiecks die gleiche Länge. Es reicht als aus, wenn du eine der drei Höhen berechnest, um die Länge aller drei Höhen zu bestimmen.

Finales Höhe Dreieck Quiz

Frage

Gib an, wie man den Punkt nennt, an dem sich die drei Höhen eines Dreiecks schneiden

Antwort anzeigen

Antwort

Der Punkt heißt Höhenschnittpunkt H. 

Frage anzeigen

Frage

Gib an, wie viele Höhen ein Dreieck hat. 

Antwort anzeigen

Antwort

Jedes Dreieck hat genau drei Höhen. 

Frage anzeigen

Frage

Gib an, was der Höhenfußpunkt eines Dreiecks ist.

Antwort anzeigen

Antwort

Der Punkt, an dem die Höhe die gegenüberliegende Seite schneidet, heißt Höhenfußpunkt.

Frage anzeigen

Frage

Bewerte diese Aussage:

Eine Höhe liegt immer im Dreieck. 

Antwort anzeigen

Antwort

Das ist so nicht richtig. Bei stumpfwinkligen Dreiecken liegen zwei der drei Höhen außerhalb des Dreiecks. Bei rechtwinkligen Dreiecken sind zwei der drei Höhen des Dreiecks gleichzeitig Dreiecksseiten

Frage anzeigen

Frage

Fasse die wichtigsten Informationen zum Thema "Höhe eines Dreiecks" kurz zusammen. 

Antwort anzeigen

Antwort

  • Die Höhe eines Dreiecks ist das Lot einer Dreiecksseite oder deren Verlängerung, das durch den gegenüberliegenden Eckpunkt verläuft. 
  • Der Punkt, an dem sich die drei Höhen eines Dreiecks schneiden, heißt Höhenschnittpunkt H. Je nach Dreiecksart liegt dieser Punkt innerhalb vom Dreieck, außerhalb vom Dreieck oder auf einem der drei Eckpunkte
  • Die Höhen des Dreiecks können mit dem Sinussatz berechnet werden. 
Frage anzeigen

Frage

Beurteile folgende Aussage:

Die Höhen eines gleichseitigen Dreiecks müssen alle einzeln berechnet werden. 

Antwort anzeigen

Antwort

Falsch! Da die drei Höhen eines gleichseitigen Dreiecks gleich lang sind, reicht es aus, eine der drei Höhen zu berechnen.

Frage anzeigen

Frage

Erkläre, was der Höhenschnittpunkt eines Dreiecks ist.
Antwort anzeigen

Antwort

Der Höhenschnittpunkt H eines Dreiecks ist der Punkt, an dem sich die drei Höhen eines Dreiecks schneiden. 

Frage anzeigen

Frage

Gib an, wo der Höhenschnittpunkt H eines spitzwinkligen Dreiecks liegt. 

Antwort anzeigen

Antwort

Der Höhenschnittpunkt H eines spitzwinkligen Dreiecks liegt innerhalb des Dreiecks

Frage anzeigen

Frage

Beschreibe, wo der Höhenschnittpunkt eines stumpfwinkligen Dreiecks liegt.

Antwort anzeigen

Antwort

Der Höhenschnittpunkt eines stumpfwinkligen Dreiecks liegt außerhalb vom Dreieck

Frage anzeigen

Frage

Gib an, wo sich der Höhenschnittpunkt eines rechtwinkligen Dreiecks befindet.

Antwort anzeigen

Antwort

Der Höhenschnittpunkt eines rechtwinkligen Dreiecks liegt genau auf dem Eckpunkt des Dreiecks, an dessen Winkel sich der rechte Winkel des Dreiecks befindet. 

Frage anzeigen

Frage

Nenne den Namen des Punktes, an dem sich die drei Höhen eines Dreiecks schneiden

Antwort anzeigen

Antwort

Dieser Punkt heißt Höhenschnittpunkt H. 

Frage anzeigen

Frage

Beschreibe, wie man die genaue Lage des Höhenschnittpunkts eines Dreiecks bestimmt. 

Antwort anzeigen

Antwort

Um die genaue Lage zu bestimmen konstruiert man zunächst die drei Höhen des Dreiecks. Der Punkt, an dem sich die Höhen schneiden, wird als Höhenschnittpunkt H gekennzeichnet.

Frage anzeigen

Frage

Fasse die wichtigsten Informationen zum Thema "Höhenschnittpunkt eines Dreiecks" kurz zusammen.

Antwort anzeigen

Antwort

  • Der Punkt, an dem sich die drei Höhen eines Dreiecks schneiden, wird Höhenschnittpunkt H genannt. 
  • Bei einem spitzwinkligen Dreieck liegt der Höhenschnittpunkt H innerhalb vom Dreieck, bei einem stumpfwinkligen Dreieck liegt er außerhalb vom Dreieck und bei einem rechtwinkligen Dreieck liegt er auf dem Eckpunkt des Dreiecks, an dessen Winkel sich der rechte Winkel befindet.
Frage anzeigen

Frage

Entscheide, ob es theoretisch ausreichen würde nur zwei Höhen eines Dreiecks zu konstruieren, um die Lage des Höhenschnittpunkts zu ermitteln.

Antwort anzeigen

Antwort

Zwei Geraden können sich an maximal einer Stelle schneiden. Da es sich bei der Verlängerung der Höhen um Geraden handelt, gilt das auch für die Höhen. 

Deshalb reicht es aus, den Schnittpunkt zweier Höhen zu ermitteln.

Frage anzeigen

Frage

Bewerte folgende Aussage:

Der Höhenschnittpunkt H kann mitten auf der Seite a eines Dreiecks liegen. 

Antwort anzeigen

Antwort

Das ist falsch! Der Höhenschnittpunkt kann nur innerhalb des Dreiecks, außerhalb des Dreiecks oder auf einem der Eckpunkte liegen, nicht aber mitten auf einer der Dreiecksseiten. 

Frage anzeigen

Frage

Werte aus, ob man alleine unter Berücksichtigung des Höhenschnittpunkts Rückschlüsse auf das dazugehörige Dreieck schließen kann, wenn sonst keine Informationen über das Dreieck vorliegen.

Antwort anzeigen

Antwort

Nein. Ohne Hintergrundwissen über die Seitenlängen oder Winkelgrößen sind keine Rückschlüsse auf das zugrundeliegende Dreieck möglich. 

Frage anzeigen

Frage

Beurteile, ob zwei verschiedene Dreiecke, die nebeneinander liegen, den gleichen Höhenschnittpunkt haben können. 


Antwort anzeigen

Antwort

Ja, das ist möglich. Das liegt daran, dass je nach Dreiecksart der Höhenschnittpunkt innerhalb des Dreiecks, außerhalb des Dreiecks oder auf einem der Eckpunkte liegt. So kann es passieren, dass der Höhenschnittpunkt von zwei Dreiecken der gleiche ist. 

Frage anzeigen

Frage

Bewerte folgende Aussage:

Ein Dreieck kann mehr als einen Höhenschnittpunkt haben. 

Antwort anzeigen

Antwort

Die Aussage ist falsch! Da sich zwei Geraden an maximal einem Punkt schneiden können, kann es auch nur einen Höhenschnittpunkt geben.

Frage anzeigen

Frage

Erkläre, was der Höhenfußpunkt eines Dreiecks ist.

Antwort anzeigen

Antwort

Der Höhenfußpunkt eines Dreiecks ist der Schnittpunkt einer Höhe mit der zugehörigen Seite bzw der Verlängerung der zugehörigen Seite bei stumpfwinkligen Dreiecken.

Frage anzeigen

Frage

Wie viele Höhenfußpunkte kann ein Dreieck haben?

Antwort anzeigen

Antwort

0

Frage anzeigen

Frage

Entscheide, ob die Höhenfußpunkte eines Dreiecks innerhalb des Dreiecks liegen und begründe deine Wahl.

Antwort anzeigen

Antwort

Bei spitzwinkligen und rechtwinkligen Dreiecken liegen alle Höhenfußpunkte innerhalb des Dreiecks, bei stumpfwinkligen Dreiecken lediglich der Höhenfußpunkt der längsten Seite.

Frage anzeigen

Frage

Nenne das Merkmal des Höhenfußpunktdreiecks im Bezug auf Innen- und Außenwinkel.

Antwort anzeigen

Antwort

Spitzwinklige Dreiecke:

Die Höhen des ursprünglichen Dreiecks bilden die Winkelhalbierenden der Innenwinkel des Höhenfußpunktdreiecks

Stumpfwinklige Dreiecke:

Die Höhe auf die längste Seite bildet die Winkelhalbierende des anliegenden Innenwinkels des Höhenfußpunktdreiecks; die Höhen auf die Seitenverlängernden bilden die Winkelhalbierenden des Außenwinkels der anderen beiden Winkel. Hier ist die Seitenverlängernde die Winkelhalbierende des Innenwinkels.

Frage anzeigen

Frage

Beschreibe das bedeutende Merkmal des Umkreises des Höhenfußpunktdreiecks.

Antwort anzeigen

Antwort

Der Umkreis des Höhenfußpunktdreiecks entspricht dem Feuerbachkreis des ursprünglichen Dreiecks.

Frage anzeigen

Frage

Erkläre, wie man die Lage eines Höhenfußpunkts im Koordinatensystem berechnet.

Antwort anzeigen

Antwort

Zunächst stellt man eine Geradengleichung auf, die die Seite des zu berechnenden Höhenfußpunkts abbildet. Dann stellt man mithilfe der allgemeinen Normalengleichung eine Normale zu dieser Gerade auf, die durch den Punkt gegenüber der Seite geht. Diese Normale bildet die Höhe ab. Der Schnittpunkt der Geraden mit ihrer Normale ist der Höhenfußpunkt.

Frage anzeigen

Frage

Erläutere, warum ein rechtwinkliges Dreieck nur 2 Höhenfußpunkte hat.

Antwort anzeigen

Antwort

Die beiden Katheten bilden die Höhe auf die jeweils andere. Damit ist der Dreieckspunkt zwischen den Katheten auch gleichzeitig ein doppelter Höhenfußpunkt. Der zweite Höhenfußpunkt liegt auf der Hypotenuse.

Frage anzeigen

Frage

Nenne die ausgezeichneten Punkte im Dreieck, die auf dem Feuerbachkreis liegen.

Antwort anzeigen

Antwort

Auf dem Feuerbachkreis liegen die Höhenfußpunkte, die Mittelpunkte der Seiten und die Mittelpunkte der oberen Höhenabschnitte.

Frage anzeigen

Frage

Gib an, wo sich der Mittelpunkt des Feuerbachkreises befindet.

Antwort anzeigen

Antwort

Der Mittelpunkt des Feuerbachkreises ist der Streckenmittelpunkt der Strecke zwischen Höhenschnittpunkt und Umkreismittelpunkt.

Frage anzeigen
60%

der Nutzer schaffen das Höhe Dreieck Quiz nicht! Kannst du es schaffen?

Quiz starten

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Gerade angemeldet?

Ja
Nein, aber ich werde es gleich tun

Melde dich an für Notizen & Bearbeitung. 100% for free.