Login Anmelden

Select your language

Suggested languages for you:
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|
Umfang Raute

Du hast bestimmt schon öfter Karten gespielt und Dich dadurch vielleicht auch bereits einmal gefragt, welche Form eigentlich das Karo Symbol, unter anderem das Karo Ass hat? Denn genau mit dieser geometrischen Figur, nämlich der Raute, wird sich dieser Beitrag beschäftigen. Abbildung 1: Poker KartenWeißt Du noch aus dem Schulunterricht, was genau eine Raute ausmacht? Um das herauszufinden, musst Du Dir noch…

Von Expert*innen geprüfte Inhalte
Kostenlose StudySmarter App mit über 20 Millionen Studierenden
Mockup Schule

Entdecke über 200 Millionen kostenlose Materialien in unserer App

Umfang Raute

Umfang Raute

Speicher die Erklärung jetzt ab und lies sie, wenn Du Zeit hast.

Speichern
Illustration

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmelden

Nie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmelden
Illustration

Du hast bestimmt schon öfter Karten gespielt und Dich dadurch vielleicht auch bereits einmal gefragt, welche Form eigentlich das Karo Symbol, unter anderem das Karo Ass hat?

Denn genau mit dieser geometrischen Figur, nämlich der Raute, wird sich dieser Beitrag beschäftigen.

Umfang Raute Poker Tisch StudySmarterAbbildung 1: Poker Karten

Weißt Du noch aus dem Schulunterricht, was genau eine Raute ausmacht? Um das herauszufinden, musst Du Dir noch einmal kurz vor Augen führen, was eine Raute überhaupt ist.

Die Raute – Grundlagenwissen

Die Raute, auch Rhombus genannt, ist eine Figur der Geometrie. Rauten sind Vierecke mit besonderen Eigenschaften.Die Raute gehört der Gruppe der Vierecke an und weist insgesamt vier Seiten auf, wobei die gegenüberliegenden Seiten parallel und die gegenüberliegenden Winkel gleich groß sind. Das wichtigste Merkmal der Raute ist, dass alle vier Seiten immer gleich lang sind und beide Diagonalen jeweils eine Symmetrieachse darstellen.

Folgende Abbildung soll diese Definition verdeutlichen:

Umfang Raute Raute StudySmarterAbbildung 1: Die Raute

Hier eine kurze Übersicht einiger Vierecke, um die Raute von anderen Vierecken unterscheiden zu können.

Umfang Raute Rauts vs. Drachenviereck StudySmarterAbildung 2: Raute vs. Drachenviereck

Umfang Raute Quadrat vs. Rechteck StudySmarterAbbildung 3: Quadrat vs. Rechteck

Merke:

- Beim Quadrat sind alle Winkel immer zwingend 90° groß. Bei der Raute hingegen sind diese beliebig groß!

- Die Seiten werden mit Buchstaben beschriftet, wobei jeder Buchstabe für einen konkreten Wert steht. Gleich lange Seiten haben demnach dieselben Beschriftungen.

Da nun Grundlegendes zur geometrischen Figur Raute erklärt wurde, wird auf den Fokus dieses Artikels eingegangen, nämlich der Berechnung des Umfangs.

Umfang Raute – Erklärung

In den folgenden Abschnitten wird beschrieben, was genau der Umfang ist, wozu Du diesen benötigst und wie Du den Umfang einer Raute ausrechnen kann.

Umfang Raute – Herleitung

Du musst in einer Hausaufgabe den Umfang einer Raute berechnen, jedoch kannst Dich nicht erinnern, was dieser genau ist? Keine Sorge, nach dem Lesen des folgenden Abschnitts wirst Du zukünftige Umfangsaufgaben zur Raute meistern.

Unter dem Umfang wird die Länge des Randes einer zweidimensionalen Figur verstanden. Dieser wird in der Mathematik immer mit einem großen "U" bezeichnet.

Für die Herleitung der Umfangsformel der Raute wird folgende Abbildung untersucht:

Umfang Raute Raute StudySmarterAbbildung 4: Die Raute

Wie in der Definition beschrieben, stellt der Umfang die Summe der Linien dar, welche die Figur begrenzen. Eine Raute hat immer vier gleich lange Begrenzungslinien, welche mit a bezeichnet werden. Folglich ergibt sich folgende Formel für die Berechnung des Umfangs der Raute:

Umfang Raute – Berechnen

Der Umfang einer Raute mit der Seitenlänge a berechnest Du, indem Du alle Seitenlängen aufaddierst.\[U = a+a+a+a \qquad \text{bzw.} \qquad U = 4\cdot a\]

Dieses Beispiel verdeutlicht die Berechnung des Umfangs der Raute.

Aufgabe 1

Nimm Dein kariertes Rechenheft zur Hand und schlage eine beliebige leere Seite auf. Hier siehst Du zahlreiche Kästchen. Du stellst Dir jetzt folgende Frage:

„Wie lang ist der gesamte Rand einer Raute, dessen Seiten a jeweils 2,5 cm lang sind?"

Umfang Raute Umfang Raute StudySmarterAbbildung 5: Umfang Raute

Lösung

Wie Du bereits weißt, sind alle Seiten der Raute immer gleich lang, also sind alle genau 2,5 cm lang. Wenn Du nun alle vier Seiten zusammenzählst, erhältst Du den Umfang bzw. die Länge der Strecke, welche die Figur umschließt. Somit kann der Wert für a in die Formel für den Umfang der Raute eingesetzt werden.

U =a + a + a + a oder U =4 · a

U = 4 · 2,5 cmU = 10 cm

Der Umfang der Raute mit den Seitenlängen 2,5 cm beträgt also 10 cm.

Mithilfe des Umfangs können verschiedene andere Variablen wie Seiten oder Diagonalen berechnet werden.

Rechnen mit dem Umfang einer Raute

Sollte der Umfang bei Übungsaufgaben gegeben sein, können mithilfe dessen, die Seiten und im Anschluss auch die Diagonalen der Raute berechnet werden. Wie genau Du hier vorgehen musst, wird in diesem Abschnitt erklärt.

Raute – Berechnung der Seite a mit dem Umfang

Besteht eine Aufgabe darin, die Seite a bei gegebenem Umfang zu berechnen, wird wie folgt vorgegangen:

Rechenschritte
Schritt 1:
Umfangsformel für die Raute hinschreiben
Schritt 2:
Stelle diese nach der Seite a frei
Schritt 3:
Wert für den Umfang einsetzen
Schritt 4:
Gleichung lösen

Rechnerisch sieht dies wie folgt aus:

Aufgabe 2

Berechne die Seite a einer Raute, welche einen Umfang von 24 cm aufweist.

Lösung

Wenn Du den Rechenschritten folgst, erhältst Du folgende Rechnung:

U = 4 · a | : 4U4 =a24 cm4 = a6 cm =a

Die Lösung lautet somit a = 6 cm.

Der Umfang kann auch berechnet werden, falls die Diagonalen e und f gegeben sind.

Umfang Raute – Berechnung des Umfangs U mithilfe der Diagonalen

Befindest Du Dich bereits in der neunten Klasse oder höher, dann sie Dir den folgenden Deep Dive unbedingt an, wie der Umfang mithilfe der Diagonalen berechnet werden kann. Ansonsten kannst Du diesen überspringen und direkt zu den weiteren Beispielen übergehen.

Aufgabe 3

Eine Raute weist folgende Werte auf:

e =6 cmf = 5 cm

Berechne den Umfang der Raute!

Lösung

Um den Umfang ausrechnen zu können, wird zuerst ein Wert für die Seite a benötigt. Dieser kann mithilfe des Satzes des Pythagoras ausgerechnet werden, welcher bei rechtwinkligen Dreiecken zur Anwendung kommt. Bei Betrachtung der Raute wird festgestellt, dass die Diagonalen diese in vier gleich große rechtwinklige Dreiecke aufteilen:

Umfang Raute Satz des Pythagoras StudySmarterAbbildung 6: Satz des Pythagoras - Raute

Da die Seite a berechnet werden muss, wird der Satz des Pythagoras angewendet, welcher wie folgt lautet:

K12 + K22 = H2

K1 und K2 stehen für die kürzeren Seiten im rechtwinkligen Dreieck, welche in Abbildung 12 dargestellt werden. Da beide Diagonalen zugleich die Symmetrieachse der Figur darstellen, sind die kurzen Seiten bzw. die Katheten des in der Abbildung dargestellten rechtwinkligen Dreiecks jeweils die Hälfte der Strecke der Diagonalen, also e2 und f2, welche auch als K1 und K2bezeichnet werden können. Die Seite a stellt die Hypotenuse H, also die längere und vom rechten Winkel gegenüberliegende Seite dar.

Umfang Raute Satz des Pythagoras StudySmarterAbbildung 7: Satz des Pythagoras - Raute

Werden nun die Werte bzw. Buchstaben in die Formel eingesetzt und die Gleichung nach a aufgelöst, sieht dies wie folgt aus:

K12 + K22 = H2 | Buchstaben anstelle von K1, K2 und H einsetzen(e2)2 + (f2)2 =a2 | Werte anstelle der Buchstaben einsetzen (62)2 + (52)2 =a2 | Brüche in Klammern auflösen 32 + 2,52 = a2 | 3² und 2,5² ausrechnen9 + 6,25 =a2 | 9 + 6,25 zusammenzählen15,25 =a2 | Wurzel aus 15,25 ziehen 15,25 = a3,91 =a

Als letzten Schritt wird der Wert für a in die Umfangsformel der Raute eingesetzt:

U = 4 · aU = 4 · 3,91 cmU =15,64 cm

Somit beträgt der Umfang dieser Raute 15,64 cm.

Umfang Raute – Übungsaufgaben

Mithilfe der folgenden Übungsbeispiele soll deutlich werden, wie genau der Umfang einer Raute innerhalb von Sekunden berechnet werden kann.

Aufgabe 4

Die Seitenlänge einer Raute beträgt a = 5 cm.

Berechne den Umfang U!

Lösung

Da für diese Aufgabe bereits alle für die Berechnung der Raute relevanten Werte gegeben sind, wird keine Skizze benötigt und es kann direkt zur Berechnung übergegangen werden.

Schreibe als Erstes die Formel des Umfangs der Raute nieder, welche wie folgt lautet:

U =4 a

Nun müssen diese in die Formel für die Berechnung des Umfangs für a eingesetzt werden:

U = 4 · aU =4 · 5 cmU = 20 cm

Somit beträgt der Umfang dieser Raute 20 cm.

Weiter geht's mit einem nächsten Beispiel.

Aufgabe 5

Gegeben ist folgender Wert einer Raute: a =7 cm

Berechne den Umfang U der Raute.

Lösung

Da für diese Aufgabe bereits alle für die Berechnung der Raute relevanten Werte gegeben sind, wird keine Skizze benötigt und es kann direkt zur Berechnung übergegangen werden.

Schreibe als Erstes die Formel des Umfangs der Raute nieder, welche wie folgt lautet:

U =4 a

Nun wird anstelle des Buchstabens a der effektive Wert aus der Angabe eingesetzt.

U =4 · 7 cmU = 28 cm

Der Umfang der Raute beträgt also 28 cm.

Soweit alles verstanden? Super, dann auf zur nächsten Aufgabe!

Aufgabe 5

Die Fläche einer Raute beträgt 25 cm2, wobei die Seiten e und f gleich lang sind.

Berechne den Umfang der Raute!

Lösung

Als ersten Schritt wird eine Skizze des Sachverhaltes angefertigt.

Umfang Raute Skizze StudySmarterAbbildung 8: Skizze

Wenn bestimmte Seiten ausgerechnet werden müssen, werden als Erstes immer alle Formeln aufgeschrieben, welche die gegebenen oder gesuchten Variablen enthalten. Auf dieses Beispiel bezogen wären dies die beiden Flächenformeln, welche wie folgt lauten:

A = a2 oder A = e · f2

Die Formel A = a2 kann nur verwendet werden, wenn beide Diagonalen gleich lang sind!

Nun werden beide Formeln untersucht und jene ausgewählt, welche nur eine unbekannte Variable enthält. Da die Diagonale weder aus e noch aus f aus der Angabe abgeleitet werden können, wird diese Formel ausgeschlossen.

Um jetzt die Seite a ausrechnen zu können, wird also die erste Flächenformel verwendet und die Werte aus der Aufgabe eingesetzt. Um den Wert für a zu korrekt zu berechnen, sieht dies wie folgt aus:

A = a2A = a25cm2 = a5 cm = a

Um den Umfang ausrechnen zu können, muss der Wert für a in die Umfangsformel eingesetzt werden.

U=4 · aU = 4 ·5 cmU = 20 cm

Somit hat die Raute einen Umfang von 20 cm.

Genau wie in diesem Beispiel kann auch eine der beiden Diagonalen anstelle von a berechnet werden.

Umfang Raute – Das Wichtigste auf einen Blick

    • Eine Raute erkennst Du daran, dass sie vier Winkel, vier Ecken und vier Seiten aufweist.
    • Alle Seiten der Raute sind immer gleich lang, wobei die Diagonalen jedoch unterschiedlich lang sein können.
    • Die Umfangsformel der Raute lautet: U =4 · a
    • Seitenformel für a: a =U4
    • Bei gegebenen Diagonalen e und f kann die Seite a mithilfe des Satzes nach Pythagoras berechnet werden, welche dann in die Umfangsformel eingesetzt werden kann.
    • Die Diagonalen können ebenfalls mithilfe des Satzes nach Pythagoras berechnet werden, insofern die Seite a und eine der beiden Diagonalen gegeben ist.

Nachweise

  1. Ludwig et al. (2015). Geometrie zwischen Grundbegriffen und Grundvorstellungen. Springer Verlag.
  2. Benölken et al.(2018). Leitfaden Geometrie. Springer Verlag.

Häufig gestellte Fragen zum Thema Umfang Raute

Hierfür muss man alle Seiten, welche die Figur begrenzen zusammenzählen. Somit lautet die Formel U = 4 · a

Die vier Seiten einer Raute sind immer alle gleich lang!

Die Höhe oder auch Diagonale der Raute kann mithilfe des Satzes nach Pythagoras ausgerechnet werden.

Finales Umfang Raute Quiz

Umfang Raute Quiz - Teste dein Wissen

Frage

Was ist der Umfang einer Raute?

Antwort anzeigen

Antwort

Der Umfang einer Raute ist die Summe des Randes, welcher die Figur begrenzt.

Frage anzeigen

Frage

In welcher Einheit wird der Umfang angegeben?

Antwort anzeigen

Antwort

Der Umfang wird meistens in mm (Millimeter), cm (Zentimeter), m (Meter) oder km (Kilometer) angegeben.


Frage anzeigen

Frage

Was ist der Unterschied zwischen einem Quadrat und einer Raute?

Antwort anzeigen

Antwort

Bei einem Quadrat betragen, im Gegensatz zur Raute, alle Winkel immer genau 90°. 



Frage anzeigen

Frage

Wie viele Symmetrieachsen hat eine Raute?


Antwort anzeigen

Antwort

Eine Raute hat genau zwei Symmetrieachsen, nämlich die beiden Diagonalen!


Frage anzeigen

Frage

Wie wird der Umfang mathematisch abgekürzt?


Antwort anzeigen

Antwort

Mit dem Großbuchstaben U

Frage anzeigen

Frage

Welche Eigenschaften lassen sich der Raute zuordnen?



Antwort anzeigen

Antwort

Alle Winkel sind 90° groß

Frage anzeigen

Frage

Was ist der Unterschied zwischen dem Umfang und dem Flächeninhalt?


Antwort anzeigen

Antwort

Die eingeschlossene Fläche beschreibt den Flächeninhalt, während der Umfang das äußerlich Umschließende angibt (Sprich die Länge des Randes der Figur).


Frage anzeigen

Frage

Was unterscheidet eine Raute von einem Drachenviereck?


Antwort anzeigen

Antwort

Beim Drachenviereck sind jeweils zwei Seiten gleich lang 

Frage anzeigen

Frage

Überprüfe folgende Aussagen zur Raute!



Antwort anzeigen

Antwort

Alle Winkel der Raute müssen kleiner als 90° sein

Frage anzeigen

Mehr zum Thema Umfang Raute
60%

der Nutzer schaffen das Umfang Raute Quiz nicht! Kannst du es schaffen?

Quiz starten

Wie möchtest du den Inhalt lernen?

Karteikarten erstellen
Inhalte meiner Freund:innen lernen
Ein Quiz machen

Wie möchtest du den Inhalt lernen?

Karteikarten erstellen
Inhalte meiner Freund:innen lernen
Ein Quiz machen

Kostenloser mathe Spickzettel

Alles was du zu . wissen musst. Perfekt zusammengefasst, sodass du es dir leicht merken kannst!

Jetzt anmelden

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Melde dich an für Notizen & Bearbeitung. 100% for free.

Fang an mit StudySmarter zu lernen, die einzige Lernapp, die du brauchst.

Jetzt kostenlos anmelden
Illustration