Select your language

Suggested languages for you:
Log In Anmelden
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Die All-in-one Lernapp:

  • Karteikarten
  • NotizenNotes
  • ErklärungenExplanations
  • Lernpläne
  • Übungen
App nutzen

Winkel berechnen

Save Speichern
Print Drucken
Edit Bearbeiten
Melde dich an und nutze alle Funktionen. Jetzt anmelden
Winkel berechnen

Winkel sind häufig in geometrischen Formel zu finden, hauptsächlich bei der Konstruktion und Beschreibung von Vielecken tauchen sie immer wieder auf. Doch was kannst Du machen, wenn Du einen Winkel nicht weißt? Winkel lassen sich bei genügend anderen Angaben auf verschiedene Weisen berechnen. Wie Du das in den verschiedenen Formen machst, findest Du hier.

Winkel berechnen – Grundlagenwissen

Die Grundlage vieler Vorgehensweisen zur Berechnung eines fehlenden Winkels ist die Winkelinnensumme. Die Formel der Winkelinnensumme drückt aus, dass die Summe aller Winkel für eine Form mit einer bestimmten Anzahl an Ecken immer gleich ist.

Eine Winkelinnensumme in einem beliebigen Dreieck beträgt immer 180 Grad.

Mathematisch ausgedrückt gilt also folgende Gleichung:

Winkel berechnen Formel Winkelinnensumme Dreieck StudySmarter

Winkel berechnen Formel Winkelinnensumme Dreieck StudySmarterAbbildung 1: Winkelberechnung im Dreieck

Da ein Dreieck immer drei Ecken besitzt, hat es auch immer drei Winkel, die Summe dieser drei Winkel ist also laut Definition immer .

Wie sieht das Ganze für ein Viereck aus?

Eine Winkelinnensumme in einem beliebigen Viereck beträgt immer 360 Grad. Mathematisch aufgeschrieben sieht das dann so aus:

Winkel berechnen Formel Winkelinnensumme Viereck StudySmarter

Winkel berechnen Formel Winkelinnensumme Viereck StudySmarterAbbildung 2: Winkelinnensumme im Viereck

Um zu wissen, wie groß die Winkelinnensumme in einem beliebigen Vieleck ist, kannst Du Dir folgendes merken:

Die Winkelinnensumme (in dieser Erklärung heißt sie X) im beliebigen Vieleck lässt sich durch folgende Formel berechnen:

Winkel berechnen Formel Winkelinnensumme beliebiges Vieleck StudySmarter

N steht dabei für die Anzahl an Ecken im Vieleck.

Ein Vieleck ist eine geometrische Form mit vielen Ecken, darunter zählen auch die Dreiecke, Vierecke und viele mehr.

Siehe Dir das doch einmal für einen konkreten Fall an:

Aufgabe 1

Wie groß ist die Winkelinnensumme X in einem Fünfeck?

Lösung

Ein Fünfeck hat fünf Ecken, das heißt, Du kannst Dir schon mal die Anzahl der Ecken als N notieren:

Jetzt setzt Du das N in die gegebene Formel ein und Du erhältst die Winkelinnensumme.

Die Winkelinnensumme X in einem Fünfeck beträgt also .

Winkel berechnen in Vielecken

So sehen also die Winkelinnensummen der einzelnen Formen aus, aber wie rechnest Du jetzt mit ihnen die fehlenden Winkel aus?

Grundsätzlich gibt es viele verschiedene Wege Winkel zu berechnen. In dieser Erklärung wirst Du zuerst erfahren, wie Du fehlende Winkel mit der Winkelinnensumme berechnen kannst.

Der allgemeine Ablauf sieht immer gleich aus. In den folgenden Beispielen geht es immer nach dem Schema:

  • Schritt 1: Formel für die Winkelinnensumme aufstellen und nach dem gesuchten Winkel umstellen
  • Schritt 2: gegebene Werte einsetzten und Formel ausrechnen

Winkel berechnen Dreieck

Angenommen, Du hast ein Dreieck mit nur zwei Winkeln gegeben. Hier fehlt ein Winkel, den Du jedoch mit der Winkelinnensumme berechnen kannst.

Schau Dir das doch einmal kurz an:

Aufgabe 2

Gegeben ist folgendes Dreieck:

Winkel berechnen Formel Winkelinnensumme Dreieck StudySmarterAbbildung 3: Winkelsumme im Dreieck

In diesem Dreieck sind die Winkel und bereits gegeben. Berechne den fehlenden Winkel mit der Winkelinnensumme!

Zur Erinnerung: Die Winkelinnensumme im Dreieck ist:

Lösung:

1. Schritt: Formel aufstellen

Damit Du auch auf das richtige Ergebnis kommst, solltest Du erst die Formel umstellen. In diesem Fall bedeutet das, dass Du den Winkel allein auf eine Seite bringen musst und den Rest auf die andere:

2. Schritt: Werte einsetzten und ausrechnen:

Und damit hast Du Deinen fehlenden Winkel erfolgreich berechnet!

Winkel berechnen Viereck

In einem Viereck läuft das fast genauso ab, nur hast Du einen Winkel mehr!

Im Alltag siehst Du häufig Quadrate und Rechtecke, die nur rechte Winkel besitzen. Tatsächlich zählen aber zu den Vierecken alle Formen mit vier Ecken! In dieser Erklärung handelt es sich vor allem um Vierecke, die keinen rechten Winkel besitzen.

Du hast also drei Winkel gegeben, wie sieht dann die Rechnung aus?

Aufgabe 3

Gegeben ist folgendes Viereck:

Winkel berechnen Formel Winkelinnensumme Viereck StudySmarterAbbildung 4: Winkelinnensumme im Viereck

In diesem Viereck sind die Winkel , und gegeben, berechne den Winkel mit der Winkelinnensumme!

Zur Erinnerung:

Die Winkelinnensumme im Viereck ist:

Lösung:

1. Schritt: Formel aufstellen

Stelle jetzt wieder die Formel auf, diesmal indem Du nach auflöst:

2. Schritt: Werte einsetzten und ausrechnen

Winkel berechnen in anderen Vielecken

Wie Du vielleicht schon gemerkt hast, funktioniert die Berechnung eines fehlenden Winkels mit der Winkelinnensumme immer nach dem gleichen Schema. Hier findest Du eine Schritt-für-Schritt-Anleitung, die für alle Vielecke gilt:

  • Schritt 1: Wenn nötig, die Winkelinnensumme berechnen, mit der Formel
  • Schritt 2: Formel für die Winkelinnensumme aufstellen und nach dem gesuchten Winkel umstellen
  • Schritt 3: gegebene Werte einsetzten und Formel ausrechnen

Winkel berechnen im rechtwinkligen Dreieck – Formel

Oben hast Du gesehen, wie Du in jedem beliebigen Dreieck den fehlenden Winkel berechnen kannst. In rechtwinkligen Dreiecken hast Du jedoch die Möglichkeit, Winkel durch die Winkelfunktionen Sinus, Cosinus und Tangens zu berechnen. Mit ihnen kannst Du die Winkel in einem Dreieck berechnen, wenn Du die drei Seiten im Dreieck kennst.

Ein rechtwinkliges Dreieck ist wie folgt aufgebaut:

Winkel berechnen Formel Winkelfunktionen StudySmarterAbbildung 5: Winkelfunktionen im rechtwinkligen Dreieck

Der rechte Winkel wurde links unten im Dreieck mit einem Punkt gekennzeichnet und da die Seite a gegenüberliegt, wird sie als Hypotenuse bezeichnet. In den folgenden Aufgaben wird es darum gehen, den Winkel zu berechnen. Deshalb ist die dem Winkel gegenüberliegende Seite b die Gegenkathete und die Seite c die Ankathete.

Das Thema Winkelsätze ist für sich selbst ein umfangreiches Thema, weshalb Du hier nur die Grundlagen wiederholt bekommst. Solltest Du Dich mit dem Thema mehr auseinandersetzen wollen, bringt Dich vielleicht die Erklärung Sinus, Kosinus und Tangens am rechtwinkligen Dreieck weiter.

Die Winkelfunktionen lassen sich wie folgt berechnen:

Die Winkelfunktionen Sinus, Cosinus und Tangens sehen in der mathematischen Schreibweise so aus:

Winkel berechnen Formel Winkelfunktionen StudySmarter

Beachte bei der Berechnung folgende Punkte:

  • Die Längen, die in den Berechnungen benutzt werden, müssen immer in den gleichen Einheiten angegeben werden.
  • Für den Winkel werden Gradzahlen eingesetzt.
  • Beim Eingeben in den Taschenrechner sollte dieser immer in DEG (Degree) eingestellt sein.

Sinus Winkel berechnen

Wie berechnest Du jetzt einen Winkel mit dem Sinus?

Aufgabe 4

Berechne den Winkel im folgenden rechtwinkligen Dreieck mithilfe des Sinus!

Winkel berechnen Formel Winkelfunktionen StudySmarterAbbildung 6: Sinus im rechtwinkligen Dreieck

Lösung

Dieses Dreieck hat alle Seitenlängen gegeben, Du kannst also den Sinus anwenden:

1. Schritt: Werte einsetzten

Erstmal ist es nicht nötig, die Formel umzustellen. Du kannst deshalb direkt Deine Werte einsetzen und berechnen:

2. Schritt: Winkel berechnen

Bisher hast Du nur den Sinus von Deinem gesuchten Winkel ausgerechnet. Um auszurechnen, musst Du noch den anwenden:

Beachte hierbei, dass Dein Taschenrechner auf DEG (Degree) stehen muss.

Und das ist auch schon Dein Ergebnis für den Winkel!

Cosinus Winkel berechnen

In dem gleichen Dreieck kannst Du auch den Cosinus anwenden:

Aufgabe 5

Berechne den Winkel mithilfe des Kosinus!

Winkel berechnen Formel Winkelfunktionen StudySmarterAbbildung 7: Cosinus im rechtwinkligen Dreieck

Lösung

Der Ablauf der Rechnung ist jetzt fast genauso wie im ersten Beispiel, nur wirst Du jetzt den Cosinus von statt den Sinus berechnen:

1. Schritt: Werte einsetzten

Setzte jetzt wieder Deine Werte ein – aber Achtung – beim Cosinus verwendest Du andere Seitenlängen als beim Sinus.

2. Schritt: Winkel berechnen

Wende jetzt statt des den an:

Dass Du alles richtig gemacht hast, erkennst Du daran, dass für den Winkel das Gleiche rauskommt, wie im Beispiel mit dem Sinus. Denn obwohl Du den Winkel mit verschiedenen Methoden berechnest, bleibt die eigentliche Größe des Winkels gleich.

Tangens Winkel berechnen

Zu guter Letzt fehlt nur noch der Tangens.

Aufgabe 6

Berechne den Winkel mithilfe des Tangens!

Winkel berechnen Formel Winkelfunktionen StudySmarterAbbildung 8: Tangens im rechtwinkligen Dreieck

Lösung

Zum Abschluss machst Du das ganze noch einmal mit dem Tangens:

1. Schritt: Werte einsetzen

2. Schritt: Winkel berechnen

Und wieder hast Du den gleichen Winkel herausbekommen!

Winkel berechnen – Übungsaufgaben

Hier findest Du noch einmal ein paar Übungsaufgaben, damit Du auch selbstständig ein wenig üben kannst.

Aufgabe 7

Berechne den fehlenden Winkel mit der Winkelinnensumme!

Winkel berechnen Formel Winkelinnensumme Dreieck StudySmarterAbbildung 7: Winkelinnensumme im Dreieck

Lösung

1. Schritt: Formel aufstellen

2. Schritt: Werte einsetzten und berechnen:

Aufgabe 8

Berechne den Winkel mithilfe der Winkelinnensumme!

Winkel berechnen Formel Winkelinnensumme Fünfeck StudySmarterAbbildung 8: Winkelinnensumme im Fünfeck

Lösung

1. Schritt: Formel für die Winkelinnensumme aufstellen

2. Schritt: Formel für fehlenden Winkel aufstellen

3. Schritt: Werte einsetzten und berechnen

Aufgabe 9

Berechne den fehlenden Winkel im folgenden Dreieck mit dem passenden Winkelsatz!

Winkel berechnen Formel Winkelfunktionen StudySmarterAbbildung 9: Cosinus im rechtwinkligen Dreieck

Lösung

1. Schritt: Passende Winkelfunktion ermitteln

In diesem Beispiel sind nur zwei Seiten im Dreieck gegeben. Die längere Seite ist automatisch die Hypotenuse, da sie gegenüber vom rechten Winkel steht. Die andere Seite liegt direkt am gesuchten Winkel an, das heißt, sie ist die Ankathete. Es sind also die Hypotenuse und die Ankathete gegeben, weshalb hier der Cosinus verwendet werden muss:

2. Schritt: Werte einsetzten

3. Schritt: Winkel berechnen

Winkel berechnen – Das Wichtigste

  • Die Formel der Winkelinnensumme drückt aus, dass die Summe aller Winkel für eine geometrische Form mit einer bestimmten Anzahl an Ecken immer gleich ist.
    • Die Winkelinnensumme für Dreiecke lautet:

    • Die Winkelinnensumme für Vierecke lautet:

    • Die Winkelinnensumme für beliebige Vielecke lautet:

  • Schritt-für-Schritt-Anleitung für jedes beliebiges Vieleck:

    • Schritt 1: Wenn nötig die Winkelinnensumme mit der Formel berechnen
    • Schritt 2: Formel für die Winkelinnensumme aufstellen und nach dem gesuchten Winkel umstellen
    • Schritt 3: gegebene Werte einsetzten und Formel ausrechnen
  • Fehlenden Winkel können auch durch die drei Winkelfunktionen Sinus, Kosinus und Tangens berechnet werden
    • Beachte bei der Berechnung folgende Punkte:
      • Die Längen, die in den Berechnungen benutzt werden, müssen immer in den gleichen Einheiten angegeben werden
      • Für den Winkel werden Gradzahlen eingesetzt
      • Beim Eingeben in den Taschenrechner sollte dieser immer in DEG (Degree) eingestellt sein
    • Das Ergebnis dieser Formeln wird zur Berechnung des Winkels in die entsprechende Umkehrfunktionen , oder eingesetzt

Nachweise

  1. Arnfried Kemnitz (2014). Mathematik zum Studienbeginn. Springer.
  2. spiegel.de: Die Winkelsumme eines 100-Ecks. (23.0.2022)

Häufig gestellte Fragen zum Thema Winkel berechnen

Einen unbekannten Winkel berechnest Du, indem Du entweder mit der Winkelinnensumme einer geometrischen Figur den letzten fehlenden Winkel berechnest, oder in rechtwinkligen Dreiecken die Winkelfunktionen Sinus, Kosinus oder Tangens anwendest.

Du berechnest Winkel in Grad zum Beispiel, indem Du die Umkehrfunktion der jeweiligen Winkelfunktion, also Arkussinus, Arkuscosinus und Arkustangens, anwendest.

Den Tangens berechnest Du, indem Du die Gegenkathete – also die Deinem gesuchten Winkel gegenüberstehende Seite – durch die Ankathete teilst. Die Ankathete erkennst Du daran, dass sie an Deinem gesuchten Winkel anliegt, und nicht dem rechten Winkel gegenübersteht.

Finales Winkel berechnen Quiz

Frage

Mit welchen zwei Methoden lassen sich fehlende Winkel berechnen?

Antwort anzeigen

Antwort

Fehlende Winkel lassen sich einerseits in allen beliebigen Vielecken durch die Winkelinnensumme berechnen und in rechtwinkligen Dreiecken mit den Winkelfunktionen.

Frage anzeigen

Frage

Zähle die drei Schritte zur Berechnung eines Winkels in einem beliebigen Vieleck auf.

Antwort anzeigen

Antwort

  1. Wenn nötig die Winkelinnensumme berechnen
  2. Formel für die Winkelsumme aufstellen und nach dem gesuchten Winkel umstellen
  3. gegebene Werte einsetzen und Formel ausrechnen
Frage anzeigen

Frage

Womit lassen sich fehlende Winkel in einem rechtwinkligen Dreieck berechnen?

Antwort anzeigen

Antwort

In einem rechtwinkligen Dreieck lassen sich fehlende Winkel mithilfe der Winkelfunktionen berechnen.

Frage anzeigen

Frage

Wie heißt die in einem rechtwinkligen Dreieck dem rechten Winkel gegenüberstehende Seite?

Antwort anzeigen

Antwort

Diese Seite heißt Hypotenuse.

Frage anzeigen

Frage

Welche Punkte solltest Du bei der Berechnung von Winkeln mithilfe der Winkelfunktionen beachten?

Antwort anzeigen

Antwort

  • Die Längen, die in den Berechnungen benutzt werden, müssen wimmer in den gleichen Einheiten angegeben werden
  • Für den Winkel werden Gradzahlen eingesetzt
  • Beim Eingeben in den Taschenrechner sollte dieser immer in DEG (DegreeI eingestellt sein
Frage anzeigen
60%

der Nutzer schaffen das Winkel berechnen Quiz nicht! Kannst du es schaffen?

Quiz starten

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Gerade angemeldet?

Ja
Nein, aber ich werde es gleich tun

Melde dich an für Notizen & Bearbeitung. 100% for free.