Select your language

Suggested languages for you:
Log In Anmelden
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Die All-in-one Lernapp:

  • Karteikarten
  • NotizenNotes
  • ErklärungenExplanations
  • Lernpläne
  • Übungen
App nutzen

Kongruenzabbildungen

Save Speichern
Print Drucken
Edit Bearbeiten
Melde dich an und nutze alle Funktionen. Jetzt anmelden
Mathe

Ein Punkt oder eine ganze Figur sind dir gegeben und du führst verschiedene Operationen mit Ihnen durch. Form und Größe bleiben jedoch unverändert. Die Rede ist von Kongruenzabbildungen. Was Kongruenz und Kongruenzabbildungen sind, findest du im folgenden Artikel.

Kongruenzabbildungen Definition

Im Folgenden lernst du kurz und knapp, was Kongruenz überhaupt ist und was es bedeutet, wenn zwei Figuren kongruent zueinander sind.

Kongruenz beschreibt das Verhältnis zweier Figuren zueinander. Stimmen diese Figuren in Form und Größe überein, nennt man sie kongruent oder auch deckungsgleich. Bei kongruenten Figuren stimmen sich entsprechende Seiten und Winkel in ihrer Größe überein.

Um kongruente Figuren zu erzeugen oder nachzuprüfen, ob es sich tatsächlich um Kongruenz handelt, benötigt man Kongruenzabbildungen.

Außerdem kannst du Figuren auf Kongruenz untersuchen, indem du die Kongruenzsätze anwendest.

Kongruenz und Symmetrie

Während du Symmetrie als Eigenschaft einer Figur verstehen kannst, beschreibt Kongruenz das Verhältnis zweier Figuren zueinander. Du kannst also zwei Figuren dahingehen untersuchen, ob sie zueinander kongruent sind, und eine Figur, ob sie symmetrisch ist. Symmetrien können außerdem durch Anwendung von Kongruenzabbildungen kontrolliert werden.

Kongruenzabbildungen Eigenschaften

Sind zwei Figuren A und B kongruent zueinander, lassen sie sich durch Ausführung von Kongruenzabbildungen aufeinander abbilden.

Kongruenzabbildungen sind geometrische Abbildungen, welche eindeutig und umkehrbar sind. Abgebildete Objekte bleiben in ihrer Form und Größe unverändert.

Kongruenzabbildungen weisen eine Reihe von wichtigen Eigenschaften auf. Diese sind in der folgenden Tabelle aufgelistet:

EigenschaftDefinitionBildVorkommen im Alltag
LängentreueStrecke und Bildstrecke haben die gleiche Länge.

Kongruenz Mathe Achsenspiegelung Dreieck StudySmarterAbbildung 1:Achsenspiegelung

Stellst du dich vor einen Spiegel, hat dein Spiegelbild dieselbe Größe wie du.
WinkeltreueWinkel und Bildwinkel sind gleich groß.

Kongruenz Mathe Punktspiegelung Dreieck StudySmarterAbbildung 2: Punktspiegelung

Drehst du einen Würfel um 180° ändert sich nichts an den Winkeln seiner Ecken.
GeradentreueBilder einer Geraden sind stets Geraden.

Kongruenz Mathe Achsenspiegelung Gerade StudySmarter

Abbildung 3: Achsenspiegelung
Der Horizont spiegelt sich im Meer und behält seinen Charakter der Gerade in der Spiegelung bei.
ParallelentreueGerade und Bildgerade sind parallel.

Kongruenz Mathe Verschiebung Strecke StudySmarter

Abbildung 4: Verschiebung
Verschiebst du einen Stift um 2cm nach rechts, ist dieser parallel zu seiner vorherigen Position.
KreisverwandtschaftBilder eines Kreises sind stets Kreise.

Kongruenz Mathe Drehung Kreis StudySmarter

Abbildung 5: Drehung
Drehst du einen Ball um 90° behält er seine Kreisform.

Kongruenzabbildungen Beispiele

Du kannst außerdem gleichsinnige und ungleichsinnige Kongruenzabbildungen unterscheiden.

Gleichsinnige Kongruenzabbildungen sind solche, bei welchen der Umlaufsinn von Figur und Bildfigur gleich bleibt. Ändert sich der Umlaufsinn der Figur, wenn man die Kongruenzabbildung anwendet, spricht man von einer ungleichsinnigen Kongruenzabbildung.

Kongruenz Mathe Punktspiegelung Umlaufsinn StudySmarterAbbildung 6: Gleicher Umlaufsinn bei Punktspiegelung

Kongruenz Mathe Achsenspiegelung Umlaufsinn StudySmarter
Abbildung 7: Umlaufsinn ändert sich bei Achsenspiegelung

Kongruenzabbildungen Arten

Du kannst vier verschiedene Kongruenzabbildungen unterscheiden. Welche Eigenschaften diese haben und wie du sie konstruierst lernst du in diesem Abschnitt.

Achsenspiegelung (Geradenspiegelung)

Die Achsenspiegelung ist die Grundlage aller Kongruenzabbildungen, da alle anderen durch Hintereinanderausführung der Achsenspiegelung ersetzt werden können.

Die Achsenspiegelung ist eine Kongruenzabbildung, welche jedem Punkt P einen Bildpunkt P' auf der anderen Seite einer Spiegelachse s zugeordnet. Die beiden Punkte P und P' können durch die Strecke Kongruenz Definition Achsenspiegelung StudySmarter verbunden werden, die senkrecht auf der Spiegelachse s steht. Darüber hinaus halbiert die Spiegelachse s die Strecke Kongruenz Definition Achsenspiegelung StudySmarter.

Um einen Punkt P an einer Achse zu spiegeln musst du folgendes tun:

  1. Zeichne eine Senkrechte t durch die Spiegelachse s, sodass diese durch den Punkt P führt.
  2. Messe den Abstand vom Punkt P bis zur Spiegelachse s.
  3. Trage den Punkt P' auf der anderen Seite der Spiegelachse s mit gleichem Abstand wie der Punkt P zu dieser ein.

Kongruenz Mathe Achsenspiegelung Definition StudySmarter

Abbildung 8: Achsenspiegelung des Punktes P

Möchtest du nicht nur einen Punkt sondern eine ganze Figur an einer Achse spiegeln gehst du wie oben beschrieben mit jedem Eckpunkt der Figur vor. Anschließend verbindest du die Punkte wieder.

Solltest du dir nicht mehr sicher sein, wie man den Abstand von einem Punkt zu einer Geraden misst, schau nochmal im Artikel "Abstand zwischen einem Punkt und einer Geraden" nachlesen. Du findest diesen Artikel im Kapitel "Abstand berechnen".

Außerdem kannst du den Bildpunkt auch ganz einfach mit einem Zirkel konstruieren.

Steche den Zirkel dafür in den Schnittpunkt von der Spiegelachse s und der Senkrechten t. Nun stellst du den Zirkel so ein, dass die Stiftspitze auf P liegt und zeichnest einen Kreis k.

Den Punkt P' kannst du jetzt auf der anderen Seite der Spiegelachse zeichnen, wo der Kreis k die Senkrechte t schneidet.

Dieses Vorgehen kannst du dir im Artikel" Bildpunkt einer Achsenspiegelung konstruieren" genauer anschauen.

Aufgabe:

Führe für das Dreieck ABC eine Achsenspiegelung an der Spiegelachse s durch.

Kongruenz Mathe Achsenspiegelung Beispiel Dreieck StudySmarter

Abbildung 9: Dreieck ABC und Spiegelachse s

Lösung:

Schritt 1Schritt 2

Kongruenz Mathe Achsenspiegelung Beispiel Dreieck StudySmarter

Abbildung 10: Senkrechten t, u und v

Kongruenz Mathe Achsenspiegelung Beispiel Dreieck StudySmarter

Abbildung 11: Abstände der Punkte A, B, C zur Spiegelachse s

Kongruenz Mathe Achsenspiegelung Beispiel Dreieck StudySmarter

Abbildung 12: Achsenspiegelung des Dreiecks ABC

Mit der Achsenspiegelung kannst du außerdem prüfen, ob eine Figur achsensymmetrisch ist.

Dies kannst du tun, indem du an der Mittelsenkrechte die Spiegelachse einzeichnest und dann eine Achsenspiegelung durchführst. Wird auf die selbe Figur abgebildet, liegt Achsensymmetrie vor.

Drehung (Rotation)

Die Drehung ist eine weitere Kongruenzabbildung und ähnelt in ihrem Ablauf der Punktspiegelung.

Die Drehung ist eine Kongruenzabbildung, bei welcher ein Punkt P auf einem Kreis k gegen den Uhrzeigersinn auf einen Bildpunkt P' gedreht wird. Die Drehung erfolgt um den Winkel α. Der Mittelpunkt des Kreises k wird als Drehzentrum Z bezeichnet.

Fragst du dich, warum sich der Punkt gegen den Uhrzeigersinn bewegt? Das liegt daran, dass die mathematische Richtung genau andersherum ist wie unser Uhrzeigersinn.

Um einen Punkt P zu drehen gehst du folgendermaßen vor:

  1. Zeichne einen Kreis k um das Drehzentrum Z, welcher durch den Punkt P führt.
  2. Zeichne die Gerade .
  3. Drehe die Gerade um den Winkel α gegen den Uhrzeigersinn.
  4. Dort wo die Gerade jetzt den Kreis k schneidet trägst du den Punkt P' ein.

Kongruenz Mathe Drehung Definition StudySmarter

Abbildung 13: Drehung des Punktes P

Aufgabe:

Drehe das Dreieck ABC um α = 45° gegen den Uhrzeigersinn.

Kongruenz Mathe Drehung Beispiel Dreieck StudySmarter

Abbildung 14: Dreieck ABC und Drehzentrum Z

Lösung:

Schritt 1Schritt 2Schritt 3

Kongruenz Mathe Drehung Beispiel Dreieck StudySmarter

Abbildung 15: Kreise k, l und m

Kongruenz Mathe Drehung Beispiel Dreieck StudySmarter

Abbildung 16: Geraden durch A, B und C

Kongruenz Mathe Drehung Beispiel Dreieck StudySmarter

Abbildung 17: Drehung der Geraden um 45°

Kongruenz Mathe Drehung Beispiel Dreieck StudySmarter

Abbildung 18: Drehung des Dreiecks ABC um 45°

Punktspiegelung

Die Punktspiegelung ist ein Spezialfall der Drehung und daher genau genommen keine erneut zu nennende Kongruenzabbildung. Da sie aber relativ häufig vorkommt, soll sie hier trotzdem ausgeführt werden.

Die Punktspiegelung ist eine Drehung um 180°.

Die Punktspiegelung ist eine Drehung, welche den Punkt P um 180° auf einem Kreis gegen den Uhrzeigersinn dreht. So entsteht der Bildpunkt P'. Wie bei der Drehung ist der Mittelpunkt des Kreises das Drehzentrum Z.

Diese Schritte sind bei einer Punktspiegelung zu erledigen:

  1. Zeichne einen Kreis k um das Spiegelzentrum Z mit dem Radius .
  2. Zeichne die Gerade .
  3. Trage den Punkt P' dort ein, wo die Gerade den Kreis k schneidet.

Kongruenz MathePunktspiegelung Definition StudySmarter

Abbildung 19: Punktspiegelung des Punktes P

Möchtest du eine Figur an einem Punkt spiegeln, kannst du dies tun, indem du alle Eckpunkte der Figur wie oben beschrieben spiegelst und diese dann wieder verbindest.

Aufgabe:

Spiegel das Dreieck ABC am Spiegelzentrum Z.

Kongruenz Mathe Punktspiegelung Beispiel Dreieck StudySmarter

Abbildung 20: Dreieck ABC und Spiegelzentrum Z

Lösung:

Schritt 1Schritt 2

Kongruenz Mathe Punktspiegelung Beispiel Dreieck StudySmarter

Abbildung 21: Kreise k, l und m

Kongruenz Mathe Punktspiegelung Beispiel Dreieck StudySmarter

Abbildung 22: Geraden durch A, B und C

Kongruenz Mathe Punktspiegelung Beispiel Dreieck StudySmarter
Abbildung 23: Punktspiegelung des Dreiecks ABC

Mit der Punktspiegelung kannst du eine Figur auf Punktsymmetrie untersuchen.Um herauszufinden, ob es sich um eine punktsymmetrische Figur handelt, zeichnest du das Spiegelzentrum im Mittelpunkt der Figur ein und spiegelst die Figur an diesem Punkt. Wird auf die selbe Figur abgebildet liegt Punktsymmetrie vor.

Verschiebung (Translation)

Verschiebst du einen Punkt oder eine Figur um eine gewisse Strecke, spricht man von der Verschiebung.

Die Verschiebung ist eine Kongruenzabbildung, welche dem Punkt P durch Verschiebung um den VektorKongruenz Definition Verschiebung StudySmarter einen Bildpunkt P' zuordnet.

So verschiebst du einen Punkt P um :

  1. Zeichne eine Parallele p zum Verschiebungspfeil durch den Punkt P.
  2. Trage die Länge des Verschiebungspfeiles auf die Parallele ab.
  3. Zeichne den Punkt P' auf der Parallele ein.

Kongruenz Mathe Verschiebung Definition StudySmarter

Abbildung 24: Verschiebung des Punktes P

Aufgabe:

Verschiebe das Dreieck ABC um den Verschiebungspfeil .

Kongruenz Mathe Verschiebung Beispiel Dreieck StudySmarter

Abbildung 25: Dreieck ABC und Verschiebungspfeil XY

Lösung:

Schritt 1Schritt 2

Kongruenz Mathe Verschiebung Beispiel Dreieck StudySmarter

Abbildung 26: Geraden durch A, B und C

Kongruenz Mathe Verschiebung Beispiel Dreieck StudySmarter

Abbildung 27: Länge des Verschiebungspfeils auf Geraden abtragen

Kongruenz Mathe Verschiebung Beispiel Dreieck StudySmarter

Abbildung 28: Verschiebung des Dreiecks ABC

Schubspiegelungen (Gleitspiegelung)

Spiegelst du einen Punkt oder eine Figur an einer Achse und verschiebst dieses Bild dann parallel zur Spiegelachse, wird das Schubspiegelung genannt.

Die Schubspiegelung ist eine Kombination aus Achsenspiegelung und Parallelverschiebung. Sie ordnet dem Punkt P zunächst einen um Kongruenz Definition Schubspiegelung StudySmarter verschobenen Bildpunkt P' zu. Kongruenz Definition Schubspiegelung StudySmarter ist parallel zur Spiegelachse s.

Mit diesem Bildpunkt P' wird dann noch eine Achsenspiegelung an der Spiegelachse s durchgeführt, um den endgültigen Bildpunkt P'' zu erhalten.

So führst du die Schubspiegelung für einen Punkt P durch:

  1. Verschiebe den Punkt P um den Vektor .
  2. Spiegel nun den Punkt P' an der Spiegelachse s und du erhältst den Punkt P''.

Kongruenz Mathe Schubspiegelung Beispiel Punkt StudySmarter

Abbildung 29: Schubspiegelung des Punktes P

In welcher Reihenfolge du hier vorgehst ist nicht entscheidend, da die Verknüpfung von Kongruenzabbildungen kommutativ ist. Du kannst also auch erst eine Achsenspiegelung und dann die Verschiebung durchführen.

Aufgabe:

Führe für das Dreieck ABC eine Schubspiegelung an der Spiegelachse s um den Vektor durch.

Kongruenz Mathe Schubspiegelung Beispiel Dreieck StudySmarter

Abbildung 30: Dreieck ABC mit Spiegelachse s und Vektor XY

Lösung:

ParallelverschiebungAchsenspiegelung

Kongruenz Mathe Schubspiegelung Beispiel Dreieck StudySmarter

Abbildung 31: Parallelverschiebung von ABC
Kongruenz Mathe Schubspiegelung Beispiel Dreieck StudySmarter
Abbildung 32: Achsenspiegelung von A'B'C'

Kongruenzabbildungen kombinieren

Du kannst Kongruenzabbildungen auch kombinieren, indem du sie hintereinander ausführst. Dabei kannst du entweder dieselbe Abbildung mehrmals anwenden oder verschiedene Kongruenzabbildungen nacheinander.

Die Verknüpfung von Kongruenzabbildungen ist kommutativ. Es ist also egal, in welcher Reihenfolge du die Abbildungen ausführst.

Generell lassen sich alle Kongruenzabbildungen durch eine Verkettung von maximal drei Achsenspiegelungen darstellen.

Im Kapitel "Verknüpfung von Kongruenzabbildungen" erfährst du mehr dazu.

Die Punktspiegelung eines Punktes oder einer Figur kannst du auch durch eine doppelte Achsenspiegelung erreichen.

Kongruenz Mathe Punktspiegelung Beispiel Dreieck StudySmarterAbbildung 33: Punktspiegelung des Dreiecks ABC

Abbildung 34: Doppelte Achsenspiegelung des Dreiecks ABC

Kongruenzabbildungen Aufgaben

Zum Schluss kannst du noch anhand von zwei Aufgaben überprüfen, ob du den Inhalt des Artikels verstanden hast. Danach solltest du dir unbedingt auch die Karteikarten zu diesem Kapitel anschauen!

Aufgabe 1

Welche der folgenden Figuren sind kongruent zueinander?

Kongruenz Mathe Figurenauswahl StudySmarter

Abbildung 35: Figurenauswahl

Lösung

  • A & C
  • D & G
  • H & F

Aufgabe 2

Führe für das Viereck ABCD eine Achsenspiegelung durch.

Kongruenz Mathe Achsenspiegelung Viereck StudySmarterAbbildung 36: Viereck ABCD

Lösung

Kongruenz Mathe Achsenspiegelung Viereck StudySmarter

Abbildung 37: Achsenspiegelung des Vierecks ABCD

Kongruenzabbildungen - Das Wichtigste

  • Kongruente Figuren stimmen in ihrer Form und Größe überein.
  • Sind zwei Figuren kongruent, so gibt es mindestens eine Kongruenzabbildung, die die eine Figur auf die andere abbildet.
  • Die vier Kongruenzabbildungen sind die Achsenspiegelung, Schubspiegelung, Drehung und die Verschiebung.
  • Kongruenzabbildungen sind geradentreu, längentreu, parallelentreu und winkeltreu.
  • Die Achsenspiegelung ist eine Kongruenzabbildung, welche jedem Punkt P einen Bildpunkt P' auf der anderen Seite einer Spiegelachse s zugeordnet.
  • Die Drehung ist eine Kongruenzabbildung, bei welcher ein Punkt P auf einem Kreis k gegen den Uhrzeigersinn auf einen Bildpunkt P' gedreht wird.
  • Die Verschiebung ist eine Kongruenzabbildung, welche dem Punkt P durch Verschiebung um einen Vektor einen Bildpunkt P' zuordnet.
  • Die Schubspiegelung ist eine Kombination aus Achsenspiegelung und Parallelverschiebung.
  • Die Punktspiegelung ist ein Sonderfall der Drehung, welche den Punkt P um 180° auf einem Kreis gegen den Uhrzeigersinn dreht.
  • Die Verknüpfung von Kongruenzabbildungen ist möglich.

Kongruenzabbildungen

Unter Kongruenz versteht man die Übereinstimmung zweier Figuren in Form und Größe.

Ein Dreieck ist kongruent, wenn seine drei Seiten und Winkel die selbe Größe haben wie die des anderen Dreiecks.

Es gibt die Achsenspiegelung, Drehung, Punktspiegelung, Verschiebung und die Schubspiegelung. Außerdem lassen sich diese Arten auch untereinander kombinieren. 

Finales Kongruenzabbildungen Quiz

Frage

Welche Eigenschaften besitzen Kongruenzabbildungen?

Antwort anzeigen

Antwort

  • Winkeltreue
  • Längentreue
  • Geradentreue
  • Parallelentreue
  • Kreisverwandtschaft
Frage anzeigen

Frage

Was versteht man unter Kongruenz?

Antwort anzeigen

Antwort

Kongruenz bezeichnet das Verhältnis zweier Figuren zueinander, wenn diese in Form und Größe übereinstimmen.


Frage anzeigen

Frage

Handelt es sich bei der Punktsymmetrie um eine gleichsinnige oder ungleichsinnige Kongruenzabbildung?

Antwort anzeigen

Antwort

Gleichsinnige Kongruenzabbildung

Frage anzeigen

Frage

Welche der folgenden Kongruenzabbildungen sind ungleichsinnig?


Antwort anzeigen

Antwort

Achsenspiegelung

Frage anzeigen

Frage

Nenne die Kongruenzabbildungen.

Antwort anzeigen

Antwort

  • Achsenspiegelung
  • Drehung/ Punktspiegelung
  • Verschiebung
  • Schubspiegelung
Frage anzeigen

Frage

Wozu kannst du die Achsenspiegelung verwenden?

Antwort anzeigen

Antwort

Prüfung auf Achsensymmetrie

Frage anzeigen

Frage

Mit welcher Kongruenzabbildung kannst du alle anderen Kongruenzabbildungen erzeugen?

Antwort anzeigen

Antwort

Die Achsenspiegelung kann jede andere Kongruenzabbildung ersetzen, indem sie mehrfach hintereinander ausgeführt wird. Dabei sind maximal drei Achsenspiegelungen nötig,

Frage anzeigen

Frage

Was ist Winkeltreue?

Antwort anzeigen

Antwort

Winkel und Bildwinkel sind gleich groß.

Frage anzeigen

Frage

Was besagt die Parallelentreue?

Antwort anzeigen

Antwort

Gerade und Bildgerade sind parallel.


Frage anzeigen
60%

der Nutzer schaffen das Kongruenzabbildungen Quiz nicht! Kannst du es schaffen?

Quiz starten

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Melde dich an für Notizen & Bearbeitung. 100% for free.