Select your language

Suggested languages for you:
Log In Anmelden
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free

Die All-in-one Lernapp:

  • Karteikarten
  • NotizenNotes
  • ErklärungenExplanations
  • Lernpläne
  • Übungen
App nutzen

Oberflächeninhalt Kegel

Save Speichern
Print Drucken
Edit Bearbeiten
Melde dich an und nutze alle Funktionen. Jetzt anmelden
X
Illustration Du hast bereits eine Erklärung angesehen Melde dich kostenfrei an und greife auf diese und tausende Erklärungen zu
Mathe

Vielleicht weißt Du schon, was ein Kegel ist und vielleicht sogar, aus welchen Teilen er besteht. Neben dem Volumen eines Kegels lässt sich auch seine Oberfläche berechnen. Nach welchen Formeln dies erfolgt und wofür Du diese Rechnung benötigst, erfährst Du in diesem Artikel.

Oberflächeninhalt Kegel Kegel StudySmarter

Allgemeines zum Oberflächeninhalt eines Kegels

Jedes geometrische Objekt, also jedes Objekt im dreidimensionalen Raum, hat eine Oberfläche und dadurch auch einen Oberflächeninhalt, der berechnet werden kann. Dieser Oberflächeninhalt zeigt zum Beispiel an, wie viel von einem Material benötig wird, um einen Körper zu umwickeln.

Wiederholung Kegel

Der Kegel ist ein spitz zulaufender, dreidimensionaler Körper mit einem Kreis als Grundfläche. Er setzt sich zusammen aus der Grundfläche G, der Spitze S, der Mantelfläche M, der Mantellinie s und der Höhe h.

Oberflächeninhalt Kegel, Kegel Körper, StudySmarterAbbildung 1: Kegel

Um mehr über Kegel zu erfahren, lies Dir gerne unseren Artikel dazu durch.

Definition des Oberflächeninhalts

Der Oberflächeninhalt O besteht aus allen äußeren Flächen einer Figur.

Wenn man einen Kegel aufschneidet und in seine Einzelteile zerlegt, erhält man 2 Flächen: eine Mantelfläche und einen Kreis. Wenn deren Flächeninhalt zusammenaddiert wird, erhältst Du den Oberflächeninhalt des Kegels.

Oberflächeninhalt Kegel Netz eines Kegels StudySmarterAbbildung 2: Netz eines Kegels

Der Oberflächeninhalt einer Figur darf nicht mit deren Volumen verwechselt werden. Während der Oberflächeninhalt die gesamte äußere Fläche einer Figur umfasst, bezeichnet das Volumen den räumlichen Inhalt der Figur.

Einheit

Der Oberflächeninhalt besteht aus den Flächeninhalten der verschiedenen Formen. Deshalb wird der Oberflächeninhalt O in derselben Einheit wie der Flächeninhalt angegeben.

Der Oberflächeninhalt wird als quadrierte Längeneinheit angegeben, zum Beispiel in Quadratmillimetern (mm²), Quadratzentimetern (cm²), Quadratdezimetern (dm²), Quadratmetern () oder Quadratkilometern (km²).

Die Längeneinheiten werden wie folgt umgerechnet:

1 cm2 = 100 mm21 dm2 = 100 cm21 m2 = 100 dm21 km2 = 1000000 m2

Um Dich in das Thema zu vertiefen, lies Dir gerne den Artikel zu Flächeneinheiten durch!

Berechnen der Mantelfläche eines Kegels

Ein Teil des Oberflächeninhaltes besteht aus der Mantelfläche M des Kegels.

Die Mantelfläche M eines Kegels ist ein Kreisausschnitt (auch Kreissegment genannt). Der Radius dieses Kreisausschnittes entspricht der Mantellinie s, während die Bogenlänge b dem Umfang U des Kreises der Grundfläche entspricht.

Da die Mantelfläche auch eine Fläche ist, wird sie in der gleichen Einheit wie der Oberflächeninhalt angegeben. Graphisch sieht sie wie folgt aus:

Oberflächeninhalt Kegel Mantelfläche StudySmarterAbbildung 3: Mantelfläche M

Für die Mantelfläche M eines Kegels gilt:

M = π · r · s

Zur Wiederholung: π (Pi) ist die Kreiszahl. Sie ist unendlich und hat den gerundeten Wert 3,14. Entweder Du verwendest diesen gerundeten Wert oder gibst einfach pi in Deinen Taschenrechner ein.

Schauen wir uns die Formel mal an einem Beispiel an:

Aufgabe

Berechne die Mantelfläche M eines Kegels mit r = 5 m und s = 2 m.

Lösung

Zuerst musst Du die Formel zur Berechnung der Mantelfläche eines Kegels aufschreiben.

M = π · r · s

Als Nächstes kannst Du die bekannten Werte in die Formel einsetzen.

M = π · 5 m · 2 m

Zum Schluss kannst Du das Ergebnis mit dem Taschenrechner ausrechnen.

M = π · 10 m2M 31,4 m2

Die Mantelfläche des Kegels ist ungefähr 31,4 m² groß.

Berechnen des Oberflächeninhalts eines Kegels

Um jetzt den Oberflächeninhalt berechnen zu können, gibt es eine Formel. Diese Formel leitet sich aus der oben dargestellten Zerlegung des Kegels ab.

Herleitung der Formel des Oberflächeninhalts eines Kegels

Die Formel für den Oberflächeninhalt lässt sich mithilfe der Zerlegung eines Kegels herleiten. Ein Kegel besteht aus zwei Flächen: der Mantelfläche M und der kreisförmigen Grundfläche G.

Oberflächeninhalt Kegel beschriftetes Netz StudySmarterAbbildung 4: beschriftetes Netz eines Kegels

Die Summe dieser beiden Flächen ergibt die Formel für den Oberflächeninhalt O.

Neben der Mantelfläche M musst Du noch die Grundfläche ermitteln, um den Oberflächeninhalt eines Kegels berechnen zu können. Die Grundfläche G ist kreisförmig und kann deshalb wie der Flächeninhalt A eines Kreises berechnet werden.

Für den Flächeninhalt A eines Kreises und damit für die Grundfläche G gilt:

A/G = π · r2

Oberflächeninhalt Kegel Flächeninhalt Kreis StudySmarterAbbildung 5: Flächeninhalt

Wenn Du nun die Formel für die Mantelfläche M mit der Formel für die Grundfläche G addierst, erhältst Du die Formel für den Oberflächeninhalt eines Kegels:

O = π · r2 + π · r · s

Anstatt dieser Formel kannst Du auch die vereinfachte Formel der Mantelfläche und der Grundfläche verwenden.

Die allgemeine Formel für den Oberflächeninhalt O lautet:

O = M + G

Formel des Oberflächeninhalts eines Kegels

Für den Oberflächeninhalt O eines Kegels gilt:

O = π · r2 + π · r · s

Diese Formel kann zusammengefasst werden:

O = π · r · (r + s)

Hier findest Du ein Anwendungsbeispiel für diese Formel:

Aufgabe

Berechne den Oberflächeninhalt O eines Kegels mit r=5 cm und s=7 cm.

Lösung

Als Erstes schreibst Du Dir die Formel zur Berechnung des Oberflächeninhalts O eines Kegels auf. Dabei kannst Du entscheiden, welche Version der Formeln Du wählst.

O = π · r2 + π · r · s

Als Nächstes werden die oben gegebenen Werte in die Formel eingesetzt.

O = π · (5 cm)2 + π · 5 cm · 7 cm

Zum Schluss kannst Du Ergebnis mit dem Taschenrechner ausrechnen. Achte darauf, die richtige Einheit zu notieren.

O = π · 25 cm2 + π · 35 cm2O = π ·( 25 cm2 + 35 cm2)O = π · 60 cm2O 188,5 cm2

Der Oberflächeninhalt des Kegels beträgt ungefähr 188,5 cm².

Berechnung des Oberflächeninhalts eines Kegelstumpfes

Ein Sonderfall eines Kegels ist der Kegelstumpf, bei dem die Spitze abgeschnitten ist.

Oberflächeninhalt Kegel Kegelstumpf StudySmarterAbbildung 6: Kegelstumpf

Der Flächeninhalt eines Kegelstumpfes wird auch mit der Summe der Einzelflächen angegeben. Ein Kegelstumpf hat aufgrund seiner abgeschnittenen Eigenschaft noch eine zusätzliche Fläche: die Deckfläche D.

Die allgemeine Formel zur Berechnung des Oberflächeninhalts eines Kegelstumpfes lautet:

O = AM + AG + AD

Um Dich in das Thema zu vertiefen, lies Dich gerne in den Artikel zum Kegelstumpf ein!

Die konkrete Formel für den Oberflächeninhalt O eines Kegelstumpfes lautet:

O = π · s · (R + r) + π · R2 + π · r2

Diese Formel kann zusammengefasst werden zu:

O = π · (s · (R + r) + R2 + r2)

R ist dabei immer der größere Radius, während r immer der kleinere Radius ist.

Weitere Aufgaben zum Oberflächeninhalt eines Kegels

In den folgenden Aufgaben kannst Du Dein Wissen testen.

Aufgaben

1. Berechne den Oberflächeninhalt O einer Eiswaffel mit r=2 cm und s=5 cm. Gib Dein Ergebnis in dm² an.

Oberflächeninhalt Kegel Eiswaffel StudySmarter

2. Berechne die Mantellinie s eines Verkehrshütchens mit r=1 m und dem Oberflächeninhalt O=4 m3.

Oberflächeninhalt Kegel Verkehrshütchen StudySmarter

3. Berechne die Grundfläche G eines Kegels mit O=620 cm2, r=8 cm und s=10 cm.

Lösungen

Zu 1.:

Hierfür verwendest Du die Formel zur Berechnung des Oberflächeninhalts eines Kegels:

O = π · r · (r + s)

Anschließend setzt Du die oben gegebenen Werte in die Formel ein:

O = π · 2 cm · (2 cm + 5 cm)

Jetzt kannst Du das Ergebnis mit dem Taschenrechner ausrechnen:

O = π · 2 cm · 7 cmO = π · 14 cm2O 44 cm2

Da das Ergebnis in dm² angegeben werden sollte, musst Du dafür die Umrechnung von cm² in dm² durchführen:

1 cm2 = 0,01 dm2

Als Letztes kannst Du nun ein Ergebnis mit dem Dreisatz in dm² umwandeln.

1 cm2 = 0,01 dm244 cm2 = 0,44 dm2

Um mehr über den Dreisatz zu erfahren, schau gern in den zugehörigen Artikel!

Die Eiswaffel hat einen Oberflächeninhalt von 0,44 dm².

Zu 2.:

Hierfür verwendest Du die Formel zur Berechnung des Oberflächeninhalts eines Kegels:

O = π · r · (r + s)

Um die Mantellinie s zu berechnen, stellst Du die Formel nach s um:

O = π · r · (r + s) |÷(π · r)r + s = Oπ · r |- rs = Oπ · r - r

Jetzt kannst Du die bekannten Werte in die Formel einsetzten:

s = 4 m2π · 1 m - 1m

Zum Schluss musst Du nur noch das Ergebnis mit dem Taschenrechner ausrechnen:

s = 4 m2π · 1 m - 1 ms = 4 mπ - 1 ms 1,27 m - 1 ms 0,27 m

Die Mantellinie s des Verkehrshütchens beträgt ungefähr 0,27 m.

Zu 3.:

In der Aufgabe geht es um den Oberflächeninhalt O, die Grundfläche G, die Mantellinie s und den Radius r. Es gibt eine allgemeine Formel, in der die Grundfläche und der Oberflächeninhalt enthalten sind. Außerdem braucht man für diese Formel noch die Mantelfläche, diese kommt jedoch an späterer Stelle.

O = M + G

In der Aufgabenstellung sind r r und s gegeben, aber nicht M. Du kannst M durch die spezifische Formel ersetzen. Dadurch kannst Du alle Werte, die angegeben sind, verwenden:

M = π · r · s O = π · r · s + G

Jetzt musst Du noch die Formel nach G umstellen, da nach der Grundfläche gefragt ist:

O = π · r · s + G |- (π · r · s)G = O - (π · r · s)

Nun kannst Du die gegebenen Werte in die Formel einsetzten:

G = 620 cm2 - (π · 8 cm · 10 cm)

Zum Schluss kannst Du das Ergebnis mit dem Taschenrechner ausrechnen:

G = 620 cm2 - ( π · 80 cm2)G 368,7 cm2

Der Kegel hat eine Grundfläche von ungefähr 368,7 cm².

Oberflächeninhalt Kegel – Das Wichtigste auf einen Blick

  • Der Oberflächeninhalt O besteht aus allen äußeren Flächen einer Figur
  • Der Oberflächeninhalt O wird normalerweise in Quadratmillimetern (mm²), Quadratzentimetern (cm²), Quadratdezimetern (dm²), Quadratmetern (m²) oder Quadratkilometern (km²) angegeben

  • Die Mantelfläche M eines Kegels ist ein Kreisausschnitt (auch Kreissegment genannt).

  • Für die Mantelfläche M gilt: M = π · r · s

  • Allgemein gilt für den Oberflächeninhalt O: O = M + G

  • Für den Oberflächeninhalt O eines Kegels gilt: O = π · r · s + π · r2

Oberflächeninhalt Kegel

Die Mantelfläche eines Kegels ist ein Kreisausschnitt (auch Kreissegment genannt). Der Radius dieses Kreisausschnittes entspricht der Mantellinie s, während die Bogenlinie b dem Umfang U des Kreises der Grundfläche entspricht.

Der Oberflächeninhalt eines Kegels ist die äußere Hülle, die den Kegel bildet. Er setzt sich zusammen aus der Grundfläche G und der Mantelfläche M.

Man findet den Radius eines Kegels, indem man entweder

1. den Radius des Körpers misst

2. ihn sich aus zwei gegebenen Punkten ausrechnet

3. eine Formel umstellt. Du könntest zum Beispiel die Formel für die Mantelfläche 

M = π · r · s 

nach dem Radius r umstellen 

r = M/(π · s) .

Die Mantelfläche sieht aus wie ein Kreis, aus dem ein Stück herausgeschnitten wurde. Diese Fläche wird Kreisausschnitt oder Kreissegment genannt.

Finales Oberflächeninhalt Kegel Quiz

Frage

Was ist der Oberflächeninhalt?

Antwort anzeigen

Antwort

Der Oberflächeninhalt einer geometrischen Figur ist die gesamte Fläche, welche eine Figur bildet. Er besteht aus allen äußeren Flächen einer Figur. 

Frage anzeigen

Frage

In welche Einzelteile kann ein Kegel zerlegt werden?

Antwort anzeigen

Antwort

ein Kreis und ein Kreissegment

Frage anzeigen

Frage

In welcher Einheit wird der Oberflächeninhalt angegeben?

Antwort anzeigen

Antwort

Der Oberflächeninhalt wird normalerweise in Quadratmillimetern (mm²), Quadratzentimetern (cm²), Quadratdezimetern (dm²), Quadratmetern (m²) oder Quadratkilometern (km²) angegeben.

Frage anzeigen

Frage

Was ist die Mantelfläche?

Antwort anzeigen

Antwort

Die Mantelfläche eines Kegels ist ein Kreisausschnitt (auch Kreissegment genannt). Es sieht aus, als wäre ein Stück des Kreises weggeschnitten worden. Der Radius dieses Kreisausschnittes entspricht der Mantellinie s, während die Bogenlänge b dem Umfang U des Kreises der Grundfläche entspricht.

Frage anzeigen

Frage

In welcher Einheit wird die Mantelfläche angegeben?

Antwort anzeigen

Antwort

 Die Mantelfläche wird in der gleichen Einheit wie der Oberflächeninhalt angegeben. Sie wird normalerweise in Quadratmillimetern (mm²), Quadratzentimetern (cm²), Quadratdezimetern (dm²), Quadratmetern (m²) oder Quadratkilometern (km²) angegeben.

Frage anzeigen

Frage

Berechne die Mantelfläche M eines Kegels mit r = 5 m und s = 2 m.


Antwort anzeigen

Antwort

Die Mantelfläche des Kegels ist ungefähr 31,4 m² groß.

Frage anzeigen

Frage

Woraus setzt sich der Oberflächeninhalt O eines Kegels zusammen?

Antwort anzeigen

Antwort

Aus der Summe der Flächeninhalte der einzelnen Flächen. Also aus dem Flächeninhalt Grundfläche (Kreis) und der Mantelfläche (Kreissegment).

Frage anzeigen

Frage

Berechne den Oberflächeninhalt O eines Kegels mit r = 5 cm und s = 7 cm.

Antwort anzeigen

Antwort

Der Oberflächeninhalt des Kegels beträgt ungefähr 188,5 cm².

Frage anzeigen

Frage

Berechne die Mantellinie s eines Verkehrshütchens mit r = 1 m und dem Oberflächeninhalt O = 4 m³.

Antwort anzeigen

Antwort

Die Mantellinie s des Verkehrshütchens beträgt ungefähr 0,27 m.

Frage anzeigen

Frage

Was ist ein Kegelstumpf?

Antwort anzeigen

Antwort

Ein Kegelstumpf ist ein Sonderfall des Kegels, bei dem die Spitze einfach abgeschnitten ist.

Frage anzeigen
60%

der Nutzer schaffen das Oberflächeninhalt Kegel Quiz nicht! Kannst du es schaffen?

Quiz starten

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Melde dich an für Notizen & Bearbeitung. 100% for free.