Login Anmelden

Select your language

Suggested languages for you:

Select your language

Suggested languages for you:
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Geometrische Figuren

Geometrische Figuren

Siehst Du diese Figur? Genau das ist ein Haus, in welchem Du verschiedene geometrische Figuren erkennen kannst. Du kannst einen Kreis, Dreieck, Rechteck und Parallelogramme erkennen.

Was genau diese geometrischen Figuren sind, erfährst Du in dieser Erklärung.

Geometrische Figuren – Mathe

In der Mathematik gibt es viele verschiedene Geometrische Figuren in der zweidimensionalen Ebene. Das können zum Beispiel Figuren, wie ein Dreieck, oder ein Viereck sein. Hier findest Du einige auf einen Blick:

Geometrische Figuren Geometrische Figuren StudySmarterAbbildung 2: Geometrische Figuren

Alle Geometrischen Figuren – Übersicht

Verschiedene geometrische Figuren, wie zum Beispiel das Dreieck, Viereck oder der Kreis haben verschiedene Eigenschaften, welche in diesem Abschnitt erläutert werden.

Dreieck

Das Dreieck ist eine Geometrische Figur mit drei Ecken \(A, B\) und \(C\). In diesen Ecken sind jeweils ein Winkel \( \alpha , \, \beta \) und \( \gamma\), welche zusammen immer \( 180°\) ergeben.

Hier siehst Du nun ein Dreieck

Geometrische Figuren Dreieck StudySmarterAbbildung 3: Dreieck

Wenn Du mehr zum Dreieck erfahren möchtest, dann schau Dir gerne die Erklärung "Dreieck" an.

Viereck

Ein Viereck ist eine Geometrische Figur, die vier Ecken \(A, \, B, \,C\) und \(D\) und vier Seiten \(a, \,b,\,c\) und \(d\) hat. Ihre Winkel \(\alpha,\, \beta,\, \gamma\) und \( \delta\) ergeben zusammen immer \(360°\).

Geometrische Figuren iIereck StudySmarterAbbildung 4: Viereck

Klick hier "Viereck", wenn Du noch mehr zu diesem Thema erfahren möchtest.

Vieleck

Vielecke sind geometrische Figuren, die mindestens drei Ecken haben. Diese Ecken müssen dabei durch Linien verbunden sein.

Geometrische Figuren Vieleck StudySmarterAbbildung 5: Vieleck

Erfahre noch mehr über Vielecke, indem Du Dir die passende Erklärung "Vielecke" anschaust.

Kreis

Ein Kreis ist eine geometrische Figur, die aus ganz vielen Punkten besteht, die alle denselben konstanten Abstand zum Mittelpunkt \(M\) haben. Ein Kreis hat zudem immer einen Radius \(r\), der den Kreis und den Mittelpunkt \(M\) verbindet und einen Durchmesser \(d\), der den Kreis in der Mitte schneidet. Er ist immer das doppelte des Radius \(r\).

Die Kreislinie eines Kreises ist zum Beispiel ein geometrischer Ort und was das genau ist, erfährst Du in der Erklärung "Geometrischer Ort".

Geometrische Figuren Kreis StudySmarterAbbildung 6: Kreis

Ein Kreis ist immer Achsensymmetrisch in ihrem Durchmesser \(d\) und auch Punktsymmetrisch in ihrem Mittelpunkt \(M\). Wenn Du noch mehr zum Thema Symmetrie, Kongruenz und Ähnlichkeit erfahren willst, schau Dir gerne den passenden Artikel "Symmetrie, Kongruenz Ähnlichkeit" an.

Wenn Du noch mehr zum Thema Kreis erfahren willst, klicke am besten hier "Kreis".

Gerade, Strecke, Strahl

Die drei geometrischen Figuren Gerade, Strecke und Strahl sind verschieden, haben aber eins gemeinsam, denn sie sind alle eine Linie.

GeradeStreckeStrahl
Durch keinen Punkt begrenzt, also unendlich lang.Durch zwei Punkte \(A\) und \(B\) auf eine Länge begrenzt.Hat einen Anfangspunkt \(C\), geht dann aber ins Unendliche.

Geometrische Figuren Gerade, Strecke, StrahlAbbildung 7: Gerade, Strecke, Strahl

Zwischen diesen geometrischen Figuren kann auch ein Abstand berechnet werden. Wie das funktioniert, erfährst Du in der Erklärung "Abstand berechnen".

Wenn zwei dieser Objekte sich nun kreuzen, dann kannst Du den Strahlensatz verwenden, um die Länge der Strecke berechnen zu können. Wie das geht, kannst Du in der Erklärung "Strahlensätze" nachlesen.

Wenn Du noch mehr zum Thema Geraden, Strecken und Strahle erfahren möchtest, klicke doch hier: "Gerade Strecke Strahl".

Zusammengesetzte geometrische Figuren benennen

Zusammengesetzte geometrische Figuren, sind Vielecke, die in einzelne Figuren unterteilt werden können. An dieser Stelle hast Du dieses Beispiel.

Geometrische Figuren Zusammengesetzte geometrische Figur StudySmarterAbbildung 8: Zusammengesetzte geometrische Figur

In welche Figuren kann diese zusammengesetzte Figur jetzt eingeteilt werden?

Geometrische Figuren Zusammengesetzte geometrische Figur StudySmarterAbbildung 9: Zusammengesetzte geometrische Figur

Die Figur kannst Du in drei geometrische Figuren einteilen:

  • Ein Dreieck
  • Zwei Rechtecke

Diese Technik kannst Du dazu verwenden, den Flächeninhalt eines Vieleckes einfacher zu berechnen.

Geometrische Figuren – Eigenschaften und Formeln

Geometrische Figuren können verschiedene Eigenschaften haben, wie zum Beispiel ihre Winkel \(\alpha, \, \beta,\,\gamma\) oder \(\delta\) oder Symmetrie.

Als Beispiel gibt es in dem Fall ein Parallelogramm, welches ein Viereck ist gegenüberliegenden parallelen Seiten.

Geometrische Figuren Symmetriepunkt eines Parallelogramms StudySmarterAbbildung 10: Symmetriepunkt eines Parallelogramms

In diesem Foto erkennst Du den Symmetriepunkt \(S\) im Schnittpunkt der Diagonalen. In den Ecken des Parallelogramms erkennst Du die Winkel \(\alpha, \, \beta,\,\gamma\) und \(\delta\).

Hier ergeben alle \(\alpha+\beta+\gamma+\delta=360°\).

Wenn Du noch mehr zum Thema Symmetrie und Winkel erfahren möchtest, kannst Du Dir gerne die Erklärungen "Winkel" und "Symmetrie Kongruenz Ähnlichkeit" anschauen

Nun hast Du all das Wissen auf einen Blick!

Geometrische Figuren – Das Wichtigste

  • Das Dreieck ist eine Geometrische Figur mit drei Ecken \(A, B\) und \(C\)
  • Ein Viereck ist eine Geometrische Figur, die vier Ecken \(A, \, B, \,C\) und \(D\) und vier Seiten \(a, \,b,\,c\) und \(d\) hat.
  • Vielecke sind geometrische Figuren, die mindestens drei Ecken haben.
  • Ein Kreis ist eine geometrische Figur, die aus ganz vielen Punkten besteht, die alle denselben konstanten Abstand zum Mittelpunkt \(M\) haben.
  • Die drei geometrischen Figuren Gerade, Strecke und Strahl sind verschieden, haben aber eins gemeinsam, denn sie sind alle eine Linie.

Nachweise

  1. Roth, Wittmann (2018). Ebene Figuren und Körper. Springer Spektrum, Berlin, Heidelberg.
  2. Albrecht (2020):Linien, Punkte und Flächeninhalt im Dreieck. Springer Spektrum. Berlin. Heidelberg.

Häufig gestellte Fragen zum Thema Geometrische Figuren

Ein Dreieck ist eine geometrische Figur in der zweidimensionalen Ebene.

Es gibt viele verschiedene geometrische Figuren. Im zweidimensionalen Raum gibt es folgende: Dreieck, Viereck, Vieleck, Kreis und diese haben noch einzelne spezielle geometrische Figuren, wie zum Beispiel das gleichschenklige Dreieck, oder das Parallelogramm. 

Eine Geometrische Figur ist eine Figur, welche in der zweidimensionalen Ebene, oder dreidimensionalen Raum existiert. Sie hat Punkte, die miteinander verbunden sein müssen.

Finales Geometrische Figuren Quiz

Frage

Was ist ein Trapez?

Antwort anzeigen

Antwort

Ein Trapez ist ein spezielles Viereck, welches ein Paar parallele Seiten besitzt.

Frage anzeigen

Frage

Wie lautet die Formel für den Flächeninhalt eines Trapezes?

Antwort anzeigen

Antwort

\[A=\frac{1}{2}\cdot h\cdot (a-c)\]

Frage anzeigen

Frage

Beschreibe, wie Nebenwinkel entstehen. 


Antwort anzeigen

Antwort

Nebenwinkel entstehen dadurch, dass sich zwei Geraden schneiden. Es entsteht eine Geradenkreuzung mit vier Winkel. Winkel, die an dieser Geradenkreuzung nebeneinander liegen, sind Nebenwinkel. 

Frage anzeigen

Frage


Gib an, wie viele Nebenwinkelpaare entstehen, wenn sich zwei Geraden schneiden.

Antwort anzeigen

Antwort

Es ergeben sich insgesamt 4 Nebenwinkelpaare.

Frage anzeigen

Frage

α und β sind Nebenwinkel. Es ist bekannt, dass α 33° beträgt. Bestimme die Größe von β.

Antwort anzeigen

Antwort

Die Größe des Winkels β beträgt 147°.


Frage anzeigen

Frage

Nenne die beiden Vorteile, die Du hast, wenn Du Winkelgrößen mithilfe Deines Wissens über Winkelpaare berechnest, anstatt sie mit dem Geodreieck auszumessen. 

Antwort anzeigen

Antwort

  1. geringerer Zeitaufwand
  2. genauere Ergebnisse

Frage anzeigen

Frage

Benenne die vier Arten von Winkelpaaren, die an Schnittpunkten von Geraden entstehen. 

Antwort anzeigen

Antwort

  1. Nebenwinkel
  2. Scheitelwinkel
  3. Stufenwinkel
  4. Wechselwinkel

Frage anzeigen

Frage

Wie bezeichnest Du einen 180°-Winkel auch?

Antwort anzeigen

Antwort

gestreckter Winkel

Frage anzeigen

Frage

Beschreibe, wann Scheitelwinkel entstehen.

Antwort anzeigen

Antwort

Scheitelwinkel entstehen, wenn sich mindestens zwei Geraden an einem Punkt schneiden.

Frage anzeigen

Frage

Nenne die Besonderheit von Scheitelwinkeln

Antwort anzeigen

Antwort

Ist ein Winkel ein Scheitelwinkel von einem anderen Winkel, so sind die beiden Winkel gleich groß

Frage anzeigen

Frage

Gib an, wie viele Scheitelwinkelpaare entstehen, wenn sich vier Geraden an einem Punkt schneiden


Antwort anzeigen

Antwort

Es entstehen vier Scheitelwinkelpaare. 

Frage anzeigen

Frage

Entscheide, ob es sich beim Winkel δ um einen Scheitelwinkel vom Winkel α handelt.

Antwort anzeigen

Antwort

Ja, der Winkel δ ist ein Scheitelwinkel vom Winkel α. Die beiden Winkel liegen genau gegenüber voneinander.  

Frage anzeigen

Frage

Fasse die wichtigsten Punkte zum Thema Scheitelwinkel zusammen.


Antwort anzeigen

Antwort

  • Scheitelwinkel entstehen, wenn sich mindestens zwei Geraden an einem Punkt schneiden. 
  • Gegenüberliegende Winkel an dieser Geradenkreuzung sind Scheitelwinkel voneinander. 
  • Scheitelwinkel sind immer gleich groß.

Frage anzeigen

Frage

Welche Winkelart baut auf dem Prinzip der Scheitelwinkel auf?

Antwort anzeigen

Antwort

Die Wechselwinkel

Frage anzeigen

Frage

Berechne den Umfang des folgenden gleichseitigen Dreiecks:

a = 6cm

Antwort anzeigen

Antwort

18cm

Frage anzeigen

Frage

Berechne den Umfang des folgenden gleichseitigen Dreiecks: 

Seite a = 13cm

Antwort anzeigen

Antwort

39cm

Frage anzeigen

Frage

Berechne die Seite "a" des folgenden gleichseitigen Dreiecks: 

Umfang = 27cm

Antwort anzeigen

Antwort

9

Frage anzeigen

Frage

Berechne die Seite "a" des folgenden gleichseitigen Dreiecks:

Umfang = 42cm

Antwort anzeigen

Antwort

13cm

Frage anzeigen

Frage

Berechne die Fläche des folgenden gleichseitigen Dreiecks:

Seite a = 6cm

Höhe = 5cm

Antwort anzeigen

Antwort

15cm

Frage anzeigen

Frage

Berechne die Fläche des folgenden gleichseitigen Dreiecks:

Seite a = 9cm

Höhe = 4cm

Antwort anzeigen

Antwort

18cm

Frage anzeigen

Frage

Berechne die Höhe des folgenden gleichseitigen Dreiecks:

Seite a = 6cm

Fläche= 12cm²

Antwort anzeigen

Antwort

4cm

Frage anzeigen

Frage

Berechne die Höhe des folgenden gleichseitigen Dreiecks:

Seite a =10cm

Fläche = 30cm²

Antwort anzeigen

Antwort

Höhe = 6 cm

Frage anzeigen

Frage

Berechne die Seite "a" des folgenden gleichseitigen Dreiecks:

Fläche = 15cm²

Höhe = 5cm

Antwort anzeigen

Antwort

6cm

Frage anzeigen

Frage

Überprüfe folgende Aussage:

"Alle Winkel des gleichseitigen Dreiecks sind immer spitz"

Antwort anzeigen

Antwort

ja

Frage anzeigen

Frage

Überprüfe folgende Aussage:

" Alle Winkel des gleichseitigen Dreiecks sind 60° "

Antwort anzeigen

Antwort

Ja

Frage anzeigen

Frage

Überprüfe folgende Aussage:

"Das gleichseitige Dreieck hat keine Symmetrieachse!"

Antwort anzeigen

Antwort

Nein

Frage anzeigen

Frage

Überprüfe folgende Aussage:

"Im gleichseitigen Dreieck müssen nicht alle Seiten gleich lang sein!"

Antwort anzeigen

Antwort

Nein

Frage anzeigen

Frage

Berechne den Umfang des folgenden gleichseitigen Dreiecks:

Fläche = 15cm²

Höhe = 6cm

Antwort anzeigen

Antwort

15cm

Frage anzeigen

Frage

Überprüfe folgende Aussage:

"Die Höhenlinie stellt zugleich die Symmetrieachse dar!"

Antwort anzeigen

Antwort

Ja

Frage anzeigen

Frage

Überprüfe folgende Aussage:

"Die Höhenlinie der Hypotenuse stellt zugleich die Symmetrieachse dar!"

Antwort anzeigen

Antwort

Ja

Frage anzeigen

Frage

Überprüfe folgende Aussage:

"Beim gleichschenkligen Dreieck können alle Seiten gleich lang sein!"

Antwort anzeigen

Antwort

Nein

Frage anzeigen

Frage

Überprüfe folgende Aussage:

"Beim gleichschenkligen Dreieck sind beide Katheten immer gleich lang !"

Antwort anzeigen

Antwort

Ja

Frage anzeigen

Frage

Überprüfe folgende Aussage:

"Ein gleichschenkliges Dreieck kann zugleich stumpf, rechtwinklig oder spitz sein !"


Antwort anzeigen

Antwort

Ja

Frage anzeigen

Frage

Berechne die Fläche des folgenden gleichschenkligen Dreiecks:

Seite a = 10cm

Höhe = 5cm

Antwort anzeigen

Antwort

25cm²

Frage anzeigen

Frage

Berechne die Fläche des folgenden gleichschenkligen Dreiecks:

Seite a = 8cm

Höhe = 4cm

Antwort anzeigen

Antwort

16cm²

Frage anzeigen

Frage

Berechne die Seite "b" des folgenden gleichschenkligen Dreiecks:

Seite a = 8cm

Umfang = 18cm


Antwort anzeigen

Antwort

5cm

Frage anzeigen

Frage

Berechne die Seite "b" des folgenden gleichschenkligen Dreiecks:

Seite a = 15cm

Umfang = 27cm


Antwort anzeigen

Antwort

6cm

Frage anzeigen

Frage

Berechne die Seite "a" des folgenden gleichschenkligen Dreiecks:

Seite b = 8cm

Umfang = 18cm

Antwort anzeigen

Antwort

2cm

Frage anzeigen

Frage

Berechne die Seite "a" des folgenden gleichschenkligen Dreiecks:

Seite b = 3cm

Umfang = 18cm

Antwort anzeigen

Antwort

12cm

Frage anzeigen

Frage

Berechne den Umfang des folgenden gleichschenkligen Dreiecks:

Seite a = 8cm

Seite b = 14cm

Antwort anzeigen

Antwort

36cm

Frage anzeigen

Frage

Berechne den Umfang des folgenden gleichschenkligen Dreiecks:

Seite a = 2cm

Seite b= 5cm

Antwort anzeigen

Antwort

12cm

Frage anzeigen

Frage

Berechne die Höhe "a" des folgenden gleichschenkligen Dreiecks:

Seite a = 8cm

Fläche = 20cm²

Antwort anzeigen

Antwort

4cm

Frage anzeigen

Frage

Berechne die Höhe "b" des folgenden gleichschenkligen Dreiecks:

Seite b = 10cm

Fläche = 50cm²

Antwort anzeigen

Antwort

10cm

Frage anzeigen

Frage

Berechne die Seite "a" des folgenden gleichschenkligen Dreiecks:

Höhe a = 4cm

Fläche = 20cm²

Antwort anzeigen

Antwort

10cm

Frage anzeigen

Frage

Überprüfe folgende Aussage:

"Im rechtwinkligen Dreieck müssen nicht alle Seiten gleich lang sein!"

Antwort anzeigen

Antwort

Ja

Frage anzeigen

Frage

Überprüfe folgende Aussage:

"Im rechtwinkligen Dreieck sind zwei Winkel immer spitz!"

Antwort anzeigen

Antwort

Ja

Frage anzeigen

Frage

Überprüfe folgende Aussage:

"Im rechtwinkligen muss es immer eine rechten Winkel geben!"

Antwort anzeigen

Antwort

Ja

Frage anzeigen

Frage

Überprüfe folgende Aussage:

"Im rechtwinkligen Dreieck befindet sich die längste Seite immer gegenüber des rechten Winkels!"

Antwort anzeigen

Antwort

Ja

Frage anzeigen

Frage

Überprüfe folgende Aussage:

"Ein rechtwinkliges Dreieck kann zugleich gleichschenklig sein!"

Antwort anzeigen

Antwort

Ja

Frage anzeigen

Frage

Berechne die Fläche des folgenden gleichseitigen Dreiecks:

Seite a = 9cm

Höhe = 4cm

Antwort anzeigen

Antwort

18cm²

Frage anzeigen

Mehr zum Thema Geometrische Figuren
60%

der Nutzer schaffen das Geometrische Figuren Quiz nicht! Kannst du es schaffen?

Quiz starten

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Melde dich an für Notizen & Bearbeitung. 100% for free.

Get FREE ACCESS to all of our study material, tailor-made!

Over 10 million students from across the world are already learning smarter.

Get Started for Free
Illustration