Select your language

Suggested languages for you:
Log In Anmelden
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Die All-in-one Lernapp:

  • Karteikarten
  • NotizenNotes
  • ErklärungenExplanations
  • Lernpläne
  • Übungen
App nutzen

Volumen Quader

Save Speichern
Print Drucken
Edit Bearbeiten
Melde dich an und nutze alle Funktionen. Jetzt anmelden
Volumen Quader

Ein Paket, ein Schrank, ein Hochhaus und eine Heizung. Was haben diese vier Dinge gemeinsam? Sie alle haben meistens die Form eines Quaders. Und über Quader und deren Volumen erfährst du in diesem Artikel jetzt so einiges!

Volumen Quader Quader StudySmarter

Das Volumen eines Quaders

Um das Volumen eines Quaders berechnen zu können, solltest du erst einmal wissen, was ein Quader genau ist, was ein Volumen ist und wie es angegeben wird.

Volumen eines Quaders: Die Basics

Als Erstes kannst du hier wiederholen, was ein Quader überhaupt ist.

Ein Quader ist eine geometrische Figur mit 6 Flächen, 8 Ecken und 12 Kanten. Dabei sind die beiden gegenüberliegenden Flächen immer gleich groß. Im Prinzip ist ein Quader ein Viereck im drei-dimensionalen Raum.

Schaue dir beispielsweise diesen Quader an.

Volumen Quader Beispiel Quader StudySmarterAbbildung 1: Quader

Jetzt haben wir schon die Frage geklärt, was ein Quader ist, aber was ist eigentlich das Volumen?

Das Volumen eines Quaders kannst du dir so vorstellen: Du gießt Wasser in den Quader. So viel Wasser, wie in den Quader passt, so groß ist sein Volumen. Anstatt Wasser kannst du auch Einheitswürfel nehmen und schauen, wie viele Einheitswürfel in einen Quader passen.

Das Volumen ist also der räumliche Inhalt, welcher sich innerhalb einer geometrischen Figur befindet. Das Volumen wird in Formeln mit dem Großbuchstaben V abgekürzt.

Das kann dann zum Beispiel so aussehen:

Volumen Quader Wasser zur Bestimmung des Volumens eines Quaders StudySmarter Abbildung 2: Wasser zur Bestimmung des Volumens eines QuadersVolumen Quader Einheitswürfel zur Bestimmung des Volumens eines Quaders StudySmarterAbbildung 3: Einheitswürfel zur Bestimmung des Volumens eines Quaders

Einheitswürfel sind Würfel mit Seiten von jeweils 1 Längen-Einheit (LE). Dadurch hat ein Einheitswürfel ein Volumen von 1 Kubikeinheit.

Durch diese Definition des Volumens kommst du auch schnell darauf, wie das Volumen angegeben wird.

Das Volumen wird meistens in Kubikmillimeter (mm³), Kubikzentimeter (cm³), Kubikdezimetern (dm³), Kubikmetern (m³) oder Kubikkilometern (km³) angegeben.

Als Alternative wird das Volumen auch manchmal in Litern (l) oder Millilitern (ml) angegeben.

Falls du dich nicht mehr an die Umrechnungen und die genauen Umrechnungsregeln erinnern kannst, lese dir doch unseren Artikel zum Thema Volumeneinheiten umrechnen durch.

Volumen Quader: Herleitung der Formel

Die Herleitung der Formel zur Berechnung des Volumens eines Quaders, ist gar nicht so schwer zu verstehen. Stell dir vor, du hast ein Rechteck und du sollst dessen Flächeninhalt berechnen.

Was machst du? Du multiplizierst die eine Seite a mit der anderen Seite b.

Volumen Quader Grundfläche eines Quaders StudySmarterAbbildung 4: Grundfläche eines Quaders

Für den Flächeninhalt A eines beliebigen Rechtecks gilt:

Jetzt willst du aber nicht nur die Fläche eines Rechtecks berechnen, sondern das Volumen eines Quaders. Gerade hast du die Grundfläche G des Quaders berechnet. Um von einem Rechteck zu einem Quader zu kommen, musst du nur die Höhe ergänzen.

Volumen Quader Volumen eines Quaders Herleitung StudySmarterAbbildung 5: Volumen eines Quaders

Und ganz wie vorher multiplizieren wir die beiden Seiten a und b miteinander, nur dass jetzt zusätzlich noch die Höhe multipliziert wird.

Deshalb gilt für das Volumen V eines beliebigen Quaders:

Volumen Quader Formel StudySmarter

Ob die Höhe jetzt mit h bezeichnet wird oder mit c ist dabei egal.

Du kannst die Formel auch so schreiben:

Für das Volumen V von Prismen gilt:

Volumen Quader Formel Volumen Prisma StudySmarter

Volumen Quader: Formel

in diesem Abschnitt wird die Formel für das Volumen eines Quaders wiederholt und an Beispielaufgaben demonstriert.

Die Formel zur Berechnung des Volumens V eines Quaders lautet:

Volumen Quader Formel zur Berechnung des Volumens eines Quaders StudySmarter

Für die Formel brauchst du die drei Seiten a, b und c des Quaders.

In der Zeichnung sieht das so aus:

Volumen Quader Quader mit Seiten a, b und c StudySmarterAbbildung 6: Quader mit Seiten a, b und c

Spezialfall: Volumen eines Würfels

Würfel sind ein Spezialfall von Quadern. Bei ihnen sind die Seiten alle gleich lang, wodurch sich die Formel zur Berechnung des Volumens sehr stark vereinfacht.

Wie sagt man so schön? Alle Würfel sind Quader, aber nicht alle Quader sind Würfel.

Volumen Quader Würfel StudySmarterAbbildung 7: Würfel

Für das Volumen V eines Würfels gilt:

Volumen Quader Formel Volumen Würfel StudySmarter

Dadurch, dass die Seiten alle gleich lang sind, müssen hier nicht alle Seiten einzeln multipliziert werden, sondern es kann einfach eine Seitenlänge dreimal mit sich selbst multipliziert werden.

Wenn du mehr zum Thema Volumen eines Würfels wissen möchtest, lese dir doch unseren Artikel dazu durch.

In einem Beispiel sieht das so aus:

Aufgabe 1

Berechne das Volumen V eines Quaders mit den Seiten , und .

Lösung

Als Erstes musst du die Formel von oben aufschreiben.

Dann kannst du die bekannten Werte in die Formel einsetzen.

Zum Schluss kannst du jetzt noch das Ergebnis ausrechnen. Achte dabei darauf, es in der richtigen Einheit anzugeben.

Das Volumen des Quaders beträgt 24 cm³.

Berechnung des Volumens eines schiefen Quaders

Schiefe Quader sehen "normalen" Quadern sehr ähnlich. Ihr einziger Unterschied ist, dass die Seiten nach oben, nicht senkrecht auf der Grundfläche stehen, sondern schief. Das sieht dann so aus:

Volumen Quader schiefer Quader StudySmarterAbbildung 8: schiefer Quader

Du kannst auch das Volumen eines schiefen Quaders berechnen und im Grunde funktioniert das genauso, wie bei einem "normalen" Quader. Das liegt daran, dass du die bei der überstehenden Seite, in unserem Beispiel der rechten Seite, den Überstand senkrecht "abschneiden" könntest und an der gegenüberliegenden Seite wieder hinzufügen könntest. So hast du wieder einen "normalen" Quader.

Volumen Quader schiefer Quader zu "normaler" Quader StudySmarterAbbildung 9: schiefer Quader zu "normaler" Quader

Die Höhe eines schiefen Quaders entspricht nicht der Länge der Seite c. Die Höhe steht immer senkrecht auf der Grundfläche, wodurch sie explizit angegeben sein muss oder du sie erst, aus beispielsweise zwei Punkten, berechnen musst.

Volumen Quader Höhe eines schiefen Quaders StudySmarter Abbildung 10: Höhe eines schiefen Quaders

Für das Volumen V eines schiefen Quaders gilt:

Volumen Quader Formel zur Berechnung des Volumens eines schiefen Quaders StudySmarter

Volumen eines schiefen Quaders: Aufgaben

Die Berechnung sieht an einem konkreten Beispiel folgendermaßen aus:

Aufgabe 2

Berechne das Volumen V eines schiefen Quaders mit den Seiten , und der Höhe .

Lösung

Als Erstes schreibst du dir die Formel zur Berechnung des Volumens eines schiefen Quaders auf.

Dann kannst du die bekannten Werte in die Formel einsetzen.

Zu Schluss kannst du das Ergebnis jetzt durch einfaches multiplizieren ausrechnen.

Das Volumen des schiefen Quaders beträgt 56 cm³.

Volumen Quader: Aufgaben

Aufgabe 3

1. Berechne das Volumen V eines Kartons mit den Seiten , und . Gib dein Ergebnis in Liter an.

Volumen Quader Karton Aufgaben StudySmarter

2. Berechne die Höhe h eines Schrankes mit den Seiten , und dem Volumen .

Volumen Quader Schrank Aufgaben StudySmarter

3. Berechne die Standfläche einer Garage mit der Höhe und dem Volumen .

Volumen Quader Garage Aufgaben StudySmarter

Lösung

1. Zuerst musst du dir wie immer die passende Formel überlegen und diese aufschreiben. In diesem Fall sollst du das Volumen eines "normalen" Quaders berechnen, also brauchst du auch die "normale" Formel, die du oben gelernt hast.

Als Nächstes kannst du jetzt die oben gegebenen Werte einsetzen.

Danach musst du das Ergebnis ausrechnen.

Jetzt bist du aber noch nicht fertig, da du das Ergebnis in Liter angeben musst. Dafür musst du wissen, wie viele Kubikzentimeter einem Liter entsprechen.

Jetzt kannst du mit dem Dreisatz die 90 cm³ in Liter umrechnen.

Das Volumen V des Kartons beträgt 0,09 l.

2. Als Erstes schreibst du dir wieder die Formel zur Berechnung des Volumens eines Quaders auf.

In diesem Fall ist nach der Höhe gefragt, also ersetzt du c mit h und stellst die Formel anschließend nach h um.

Jetzt kannst du die gegebenen Werte in die Formel einsetzen.

Zum Schluss kannst du das Ergebnis einfach mit dem Taschenrechner ausrechnen.

Der Schrank ist ungefähr 1,6 m hoch.

3. Auf den ersten Blick scheint es vielleicht so, dass du diese Aufgabe gar nicht berechnen kannst. Wenn du aber genauer hinschaust, merkst du, dass die Standfläche der Garage nichts anderes als die Grundfläche eines Quaders. Wenn du dich jetzt erinnerst, kennst du doch eine Formel mit der Grundfläche, dem Volumen und der Höhe.

Diese Formel kannst du jetzt einfach nach G umstellen.

Jetzt kannst du wieder die bekannten Werte von oben in die Formel einsetzen.

Zum Schluss musst du nur noch das Ergebnis ausrechnen.

Die Garage hat eine Standfläche von 50 m².

Volumen Quader – Das Wichtigste auf einen Blick

  • Ein Quader ist eine geometrische Figur mit 6 Flächen, 8 Ecken und 12 Kanten.
  • die beiden gegenüberliegenden Flächen sind immer gleich groß.
  • Das Volumen ist der räumliche Inhalt, welcher sich innerhalb einer geometrischen Figur befindet.
  • Das Volumen wird in Formeln mit dem Großbuchstaben V abgekürzt.
  • Das Volumen wird meistens in Kubikmillimeter (mm³), Kubikzentimeter (cm³), Kubikdezimetern (dm³), Kubikmetern (m³) oder Kubikkilometern (km³) angegeben.
  • Manchmal wird das Volumen auch in Litern (l) oder Millilitern (ml) angegeben.
  • Die spezifische Formel zur Berechnung des Volumens V eines Quaders lautet: V = a · b · c
  • Die allgemeine Formel zur Berechnung des Volumens V lautet: V = G · h
  • Das Volumen eines schiefen Quaders wird mit folgender Formel berechnet: V = a · b · h

Häufig gestellte Fragen zum Thema Volumen Quader

Das Volumen V eines Quaders kann mithilfe seiner Grundfläche und seiner Höhe berechnet werden Allgemein gilt für das Volumen V eines Quaders:


V = G · h


Die Grundfläche G wird hierbei wie der Flächeninhalt eines Rechtecks berechnet. Deshalb gilt auch für das Volumen V eines Quaders:


V = a · b · c


a, b und c sind dabei die unterschiedlichen Seiten des Quaders.

Das Volumen V eines Quaders kann mithilfe folgender Formel berechnet werden:


V = a · b · c


a, b und c sind dabei die unterschiedlichen Seiten des Quaders.

Finales Volumen Quader Quiz

Frage

Was ist ein Quader?

Antwort anzeigen

Antwort

Ein Quader ist eine geometrische Figur mit 6 Flächen, 8 Ecken und 12 Kanten. Dabei sind die beiden gegenüberliegenden Flächen immer gleich groß. Im Prinzip ist ein Quader ein Rechteck im drei-dimensionalen Raum.

Frage anzeigen

Frage

Was ist das Volumen?

Antwort anzeigen

Antwort

Das Volumen ist der räumliche Inhalt, welcher sich innerhalb einer geometrischen Figur befindet. Er kann mithilfe von Flüssigkeiten oder Einheitswürfeln bestimmt werden

Frage anzeigen

Frage

In welcher Einheit wird das Volumen angegeben?

Antwort anzeigen

Antwort

Das Volumen wird meistens in Kubikmillimeter (mm³), Kubikzentimeter (cm³), Kubikdezimetern (dm³), Kubikmetern (m³) oder Kubikkilometern (km³) angegeben. 

Als Alternative wird das Volumen auch manchmal in Litern (l) oder Millilitern (ml) angegeben.

Frage anzeigen

Frage

Berechne das Volumen V eines Quaders mit den Seiten a = 3 cm, b = 2 cm und c = 4 cm.

Antwort anzeigen

Antwort

Das Volumen des Quaders beträgt 48 cm³.

Frage anzeigen

Frage

Berechne das Volumen V eines schiefen Quaders mit den Seiten a = 4 cm, b = 2 cm und der Höhe h = 7 cm.


Antwort anzeigen

Antwort

Das Volumen des schiefen Quaders beträgt 56 cm³.

Frage anzeigen

Frage

Berechne die Höhe h eines Schrankes mit den Seiten a = 4 m, b = 8 m und dem Volumen V = 50 m³.


Antwort anzeigen

Antwort

Der Schrank ist ungefähr 1,6 m hoch.

Frage anzeigen

Frage

Berechne die Standfläche einer Garage mit der Höhe h = 5 m und dem Volumen V = 250 m³.


Antwort anzeigen

Antwort

Die Garage hat eine Standfläche von 50 m².

Frage anzeigen

Frage

Was ist die Beziehung zwischen einem Quader und einem Würfel?

Antwort anzeigen

Antwort

Ein Würfel ist ein Sonderfall des Quaders, bei welchem alle Seiten die gleiche Länge haben. 

Man kann sagen: Jeder Würfel ist ein Quader, aber nicht jeder Quader ist ein Würfel

Frage anzeigen
Mehr zum Thema Volumen Quader
60%

der Nutzer schaffen das Volumen Quader Quiz nicht! Kannst du es schaffen?

Quiz starten

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Gerade angemeldet?

Ja
Nein, aber ich werde es gleich tun

Melde dich an für Notizen & Bearbeitung. 100% for free.