Select your language

Suggested languages for you:
Log In Anmelden
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Die All-in-one Lernapp:

  • Karteikarten
  • NotizenNotes
  • ErklärungenExplanations
  • Lernpläne
  • Übungen
App nutzen

Zylinder

Save Speichern
Print Drucken
Edit Bearbeiten
Melde dich an und nutze alle Funktionen. Jetzt anmelden
Mathe

Du hast bestimmt schonmal so einen schwarzen, hohen Hut gesehen. Diese Hüte werden Zylinder genannt.

Aber warum eigentlich? Weil sie im Grunde genau die gleiche Form haben, wie ein Zylinder in der Geometrie. Wenn Du mehr über geometrische Zylinder lernen willst, dann bist Du hier genau richtig.

Zylinder Hut Zylinder StudySmarter

In diesem Artikel erfährst Du alles, was Du über einen Zylinder wissen solltest: seine Eigenschaften, die verschiedenen Arten von Zylindern, wie Du einen Zylinder zeichnest und so weiter... Außerdem schauen wir uns alle wichtigen Flächen und Berechnungen zum Zylinder (wie z. B. das Volumen oder den Oberflächeninhalt) an.

Zylinder Zylinder StudySmarter

Eigenschaften des Zylinders

Im folgenden Abschnitt wirst Du lernen, was ein Zylinder ist und was ihn von anderen Körpern unterscheidet. Auch wie Du einen Zylinder zeichnen kannst, wird Dir hier erklärt.

Definition

Bevor Du dich damit beschäftigen kannst, wie das Volumen oder der Oberflächeninhalt eines Zylinders berechnet werden kann, solltest Du erst einmal den Zylinder selbst ein bisschen näher anschauen.

Zylinder bestehen aus zwei parallelen, ebenen, kreisförmigen Flächen, den Grundflächen G und D. Dazwischen sind sie mit einem rechteckigen, gerollten Mantel verbunden. Diese Fläche wird dann als Mantelfläche M bezeichnet.

Zylinder bestehen also aus keinen Ecken, zwei Kanten (Übergänge von Kreis zu Rechteck) und drei Flächen.

In einer Abbildung sieht ein Zylinder so aus:

Zylinder Zylinder StudySmarterAbbildung 1: Zylinder

Flächen und Netz des Zylinders

Wenn Du einen Zylinder ausrollst, kannst Du ihn in Grund-, Deck- und Mantelfläche zerlegen. Das wird dann das Netz eines Zylinders genannt.

Arten von Zylindern

Es gibt 4 verschiedene Arten von Zylindern:

  1. gerade Zylinder
  2. schiefe Zylinder
  3. Zylinder ohne Deckfläche
  4. Hohlzylinder

1. Gerader Zylinder

Gerade Zylinder sind die "normalen Zylinder", die bisher in diesem Artikel beleuchtet wurden. Die Höhe h steht hier senkrecht auf der Grundfläche G.

Wenn in diesem Artikel von einem Zylinder gesprochen wird, dann ist der gerade Zylinder gemeint.

Zylinder Zylinder mit senkrechter Höhe StudySmarterAbbildung 3: Zylinder mit senkrechter Höhe

2. Schiefer Zylinder

Schiefe Zylinder sind genauso aufgebaut wie gerade Zylinder auch, jedoch besteht deren Mantelfläche aus einem Parallelogramm und keinem Rechteck, wodurch der Zylinder schief ist. Der Mittelpunkt der Deckfläche D steht hier nicht senkrecht auf dem Mittelpunkt der Grundfläche G.

Der einzige Unterschied zwischen einem geraden Zylinder und einem schiefen Zylinder liegt in der Ermittlung der Höhe. Hier ist die Höhe das Lot, welches den Mittelpunkt der Deckfläche mit der Grundfläche verbindet.

Du kannst Dir das so vorstellen: Jetzt musst Du, um die Höhe zu ermitteln, eine senkrechte Linie vom Mittelpunkt der Deckfläche ziehen. Dann verlängerst du die Grundfläche. Diese beiden Strecken treffen sich dann an einem Punkt in einem 90° Winkel. Die Länge der Strecke zwischen dem Mittelpunkt der Deckfläche und der verlängerten Grundfläche entspricht der Höhe.

Das hört sich komplizierter an, als es ist. In einer Zeichnung verstehst Du schnell, was gemeint ist.


Unabhängig davon, ob der Zylinder schief ist, kann die Formel zur Berechnung des Volumens V eines geraden Zylinders verwendet werden.

3. Zylinder ohne Deckfläche

Eine weitere Art von Zylinder sind Zylinder ohne Deckfläche. Das bedeutet, dass sie oben sozusagen offen sind.

Zylinder Zylinder ohne Deckfläche StudySmarterAbbildung 6: Zylinder ohne Deckfläche

Um den Oberflächeninhalt O eines Zylinders ohne Deckfläche D zu berechnen, muss der Oberflächeninhalt O eines "normalen" Zylinders berechnet werden, aber mit nur einer Kreisfläche, da die andere ja fehlt.

Für den Oberflächeninhalt O eines Zylinders ohne Deckfläche D gilt:

O = 2 · π · r · h + π · r2

4. Hohlzylinder

Hohlzylinder sind Zylinder, die in der Mitte ein Loch haben. Im Prinzip bestehen sie aus zwei Zylindern: Einer, der außen liegt und gefüllt ist und einer, der innerhalb des anderen Zylinders liegt, mit der gleichen Höhe, aber einem kleineren Radius/Umfang und hohl ist.

Aufgrund dessen werden das Volumen V und der Oberflächeninhalt O anders, als bei einem geraden Zylinder berechnet.

Für das Volumen V von Hohlzylindern gilt:

V =Vaußen - VinnenV = π · rgroß2 · h - π · rklein2 · h

Für den Oberflächeninhalt O eines Hohlzylinders gilt:

O = 2 · π · (h · rg + h · rk + rg2 + rk2)

Schrägbild eines Zylinders zeichnen

Jetzt weißt Du, was ein Zylinder ist und was ihn ausmacht. Im Folgenden findest Du eine Anleitung, wie Du ihn zeichnen kannst.

Zeichnung
Anleitung
Zeichne eine waagrechte Linie mit der Länge des Durchmessers. Markiere Dir die Mitte dieser Strecke mit einem Punkt und beschrifte diesen mit MG (Mittelpunkt der Grundfläche).
Zeichne jetzt eine senkrechte Linie durch den Mittelpunkt mit der Länge des Radius (Je die Hälfte der Länge des Radius auf jeder Seite).
Verbinde die vier Enden zu einem verzogenen Kreis beziehungsweise einer Ellipse.
Am rechten und linken Ende zeichne eine senkrechte Linie nach oben mit der Länge der Höhe des Zylinders ein.
Verbinde diese beiden Enden oben mit einer waagrechten Linie. Setzte auch hier wieder einen Punkt in der Mitte der Strecke und beschrifte ihn mit MD (Mittelpunkt der Deckfläche).
Als Nächstes zeichnest Du wieder eine waagrechte Linie durch den oberen Mittelpunkt mit der Länge des Radius (halber Radius zu jeder Seite).
Verbinde die vier oberen Enden zu einem Kreis beziehungsweise einer Ellipse.
Zum Schluss kannst Du alle Linien, die Du nur für das Zeichnen gebraucht hast, wegradieren.

Berechnen des Volumens eines Zylinders

Die Formel zur Berechnung des Volumens eines Zylinders setzt sich zusammen aus einer allgemeinen Formel:

V = G · h

In diesem Fall ist die Grundfläche ein Kreis, weshalb G mit dem Flächeninhalt eines Kreises ersetzt werden kann.

Die Formel zur Berechnung des Volumens V eines Zylinders lautet:

V = π · r2 · h

oder auch

V = π · (d2)2 · h

Für die Formel brauchst Du den Radius r oder den Durchmesser d, die Höhe h und die Kreiszahl π, welche ungefähr 3,41 beträgt.

Wenn Du mehr zum Thema Volumen eines Zylinders erfahren willst, dann lese Dir doch unseren Artikel dazu durch. Dort findest Du genauere Informationen und Anwendungsbeispiele.

Die Mantelfläche eines Zylinders

Wie bereits erwähnt erhältst Du unter anderem die Mantelfläche, wenn Du einen Kegel zerlegst. Diese Mantelfläche kann berechnet werden. Aber schaue Dir erst einmal genauer an, was die Mantelfläche überhaupt ist.

Die Mantelfläche wird in Rechnungen meistens mit dem Großbuchstaben M ausgedrückt. Da sie die Form eines Rechtecks besitzt, kann sie auch wie ein solches berechnet werden.

Zylinder Mantelfläche StudySmarterAbbildung 16: Mantelfläche Zylinder

In diesem Fall entspricht die Seite a dem Umfang U und die Seite b der Höhe h des Zylinders.

Für die Mantelfläche M eines Zylinders gilt:

M = U · hM = 2 · π · r · h

Wenn Du Beispielaufgaben oder eine genauere Herleitung der Mantelfläche sehen möchtest, dann lese Dir doch unseren Artikel zum Thema Oberflächeninhalt eines Zylinders durch.

Berechnen des Oberflächeninhalts eines Zylinders

Die Formel für den Oberflächeninhalt O setzt sich zusammen aus der Summe der Einzelflächen des Zylinders. Wie Du oben gesehen hast, besteht ein Zylinder aus drei Flächen: der rechteckigen Mantelfläche M, der kreisförmigen Deckfläche D und der gleich großen Grundfläche G. Wenn Du den Flächeninhalt der Flächen addierst, erhältst Du die Formel für den Oberflächeninhalt.

Für den Oberflächeninhalt O eines Zylinders gilt:

O = 2 · π · r · h + 2 · π · r2

oder

O = 2 · π · d2 · h + 2 · π · (d2)2

Dabei ist O der Oberflächeninhalt, π die Kreiszahl, r der Radius und h die Höhe eines beliebigen Zylinders.

Wenn Du mehr zum Thema Oberflächeninhalt eines Zylinders erfahren willst, dann lese Dir doch unseren Artikel dazu durch. Dort findest Du genauere Informationen und Anwendungsbeispiele.

Formelsammlung zum Zylinder

Zur Übersicht wurden in der folgenden Tabelle alle Formeln, die Du zur Berechnung eines Kegels brauchen könntest, zusammengefasst. Falls Du mal nicht weiterkommst, kannst Du Dich hier orientieren.

Zur Referenz ist hier nochmal ein beschrifteter Zylinder abgebildet, sodass Du sehen kannst, was die einzelnen Größen nochmal bedeuten.

Zylinder beschrifteter Zylinder StudySmarterAbbildung 17: beschrifteter Zylinder

Formel
Durchmesser dd = 2 · r
Umfang UU = 2 · π · r
Grundfläche G/Deckfläche DG = D= A = π · r2
Mantelfläche MM = 2 · π · r · h
Oberflächeninhalt OO = 2 · π · r · (h + r)
Volumen VV = π · r2 · h

Zylinder Das Wichtigste auf einen Blick

  • Ein Zylinder besteht aus einer rechteckigen Mantelfläche, einer kreisförmigen Grundfläche G und einer kongruenten Deckfläche D
  • Es gibt gerade Zylinder, schiefe Zylinder, Zylinder ohne Deckfläche und Hohlzylinder
  • Bei schiefen Zylindern steht die Höhe h nicht senkrecht auf der Grundfläche G
  • Für den Oberflächeninhalt eines Zylinders ohne Deckfläche gilt: O = π · r · (2 · h + r)
  • Dadurch, dass Hohlzylinder im Grunde aus zwei Zylindern bestehen, wird ihr Volumen und ihr Oberflächeninhalt anders berechnet
    • Für das Volumen V gilt: V = π · h · (rg2 - rk2)
    • Für den Oberflächeninhalt O gilt: O = 2 · π · (h · rg + h · rk + rg2 + rk2)
  • Die Mantelfläche eines Kegels ist ein Rechteck
  • Für die Mantelfläche M gilt: M = 2 · π · r · h
  • Für das Volumen V eines Zylinders gilt: V = π · r2 · h
  • Für den Oberflächeninhalt O eines Zylinders gilt: O = 2 · π · r · (h + r)

Zylinder

Ein Zylinder ist eine geometrische Figur, die vom Aussehen einem Zauberhut gleicht.


Er besteht aus zwei parallelen, ebenen, kreisförmigen Flächen (Grundflächen) oben und unten. Dazwischen ist er mit einem rechteckigen, gerollten Mantel (Mantelfläche) verbunden. 

Zylinder bestehen aus zwei parallelen, ebenen, kreisförmigen Flächen (Grund- und Deckfläche). Dazwischen befindet sich eine rechteckige, gerollte Mantelfläche. Sie bestehen aus keinen Ecken, zwei Kanten (Übergänge von Kreis zu Rechteck) und drei Flächen.

Zylinder bestehen aus zwei parallelen, ebenen, kreisförmigen Flächen (Grund- und Deckfläche). Dazwischen sind sie mit einem rechteckigen, gerollten Mantel verbunden. Diese Fläche wird dann als Mantelfläche bezeichnet.

  1. Zeichne eine waagrechte Linie mit der Länge des Durchmessers. Markiere dir die Mitte dieser Strecke mit einem Punkt und beschrifte diesen mit MG (Mittelpunkt der Grundfläche).
  2. Zeichne jetzt eine senkrechte Linie durch den Mittelpunkt mit der Länge des Radius (Je die Hälfte der Länge des Radius auf jeder Seite).
  3. Verbinde die vier Enden zu einem Kreis beziehungsweise einer Ellipse.
  4. Am rechten und linken Ende zeichne eine senkrechte Linie nach oben mit der Länge der Höhe des Zylinders ein.
  5. Verbinde diese beiden Enden oben mit einer waagrechten Linie. Setzte auch hier wieder einen Punkt in der Mitte der Strecke und beschrifte ihn mit MD (Mittelpunkt der Deckfläche).
  6. Als Nächstes zeichnest du wieder eine waagrechte Linie durch den oberen Mittelpunkt mit der Länge des Radius (halber Radius zu jeder Seite).
  7. Verbinde die vier oberen Enden zu einem Kreis beziehungsweise einer Ellipse.
  8. Zum Schluss kannst du alle Linien, die du nur für das Zeichnen gebraucht hast wegradieren.

Finales Zylinder Quiz

Frage

Was ist die Grundfläche bei einem Zylinder? 

Antwort anzeigen

Antwort

Beim Zylinder ist die Grundfläche G eine Kreisfläche mit dem Radius r.

Frage anzeigen

Frage

Wie ist ein Zylinder aufgebaut? 

Antwort anzeigen

Antwort

Frage anzeigen

Frage

Wie berechnet man das Volumen eines Zylinders?

Antwort anzeigen

Antwort

V = π ⋅ r² ⋅ hk

Frage anzeigen

Frage

Wie berechnet man die Mantelfläche eines Zylinders?

Antwort anzeigen

Antwort

M = 2 ⋅ π ⋅ r ⋅ hk

Frage anzeigen

Frage

Wie berechnet man die Oberfläche eines Zylinders?

Antwort anzeigen

Antwort

O = 2 ⋅ π ⋅ r² + 2 ⋅ π ⋅ r ⋅ hk 

O = 2 ⋅ π ⋅ r ⋅ (r + hk)

Frage anzeigen

Frage

Woraus besteht der Mantel eines Zylinders?

Antwort anzeigen

Antwort

Aus einem Rechteck mit der Höhe hk und dem Kreisumfang u = 2 π * r als Seitenlängen.

Frage anzeigen

Frage

Eine Konservendose hat ein Fassungsvermögen von 850 cm³ und einen Durchmesser von 10 cm. Wie hoch ist die Dose?

Antwort anzeigen

Antwort

V = π ⋅ r² ⋅ hk
hk = V / (π ⋅ r²)
hk = 850 cm³ / (π ⋅ (5 cm))²
hk = 10,8 cm   

Frage anzeigen

Frage

Welche Eigenschaften besitzt ein Zylinder?

Antwort anzeigen

Antwort

Neben dem Kreis als Grundfläche hat der Zylinder parallele Begrenzungslinien und einen kongruenten Kreis als Deckfläche.

Frage anzeigen

Frage

Wie groß sind Grund- und Deckfläche eines Zylinders, wenn sein Radius 6cm beträgt?

Antwort anzeigen

Antwort


Frage anzeigen

Frage

Wie groß ist die Mantelfläche eines Zylinders, wenn der Radius 4cm und die Höhe 7cm beträgt?

Antwort anzeigen

Antwort


Frage anzeigen

Frage

Wie groß ist die Oberfläche eines Zylinders, wenn der Radius gleich 2cm und die Höhe gleich 5cm ist?

Antwort anzeigen

Antwort


Frage anzeigen

Frage

Wie groß ist das Volumen eines Zylinders, wo der Radius 3cm und die Höhe 8cm beträgt?

Antwort anzeigen

Antwort

V = π⋅(3 cm)2⋅8 cm≈226, 2cm³

Frage anzeigen
60%

der Nutzer schaffen das Zylinder Quiz nicht! Kannst du es schaffen?

Quiz starten

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Melde dich an für Notizen & Bearbeitung. 100% for free.