StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
Americas
Europe
\(\definecolor{bl}{RGB}{20, 120, 200}\definecolor{gr}{RGB}{0, 220, 180}\definecolor{r}{RGB}{250, 50, 115}\definecolor{li}{RGB}{131, 99, 226}\definecolor{ge}{RGB}{255, 205, 0}\)Grundlage aller Rechnungen in der Mathematik sind die vier Grundrechenarten. Die Addition ist eine davon und wird wegen ihres Rechenzeichens Plus (+) auch oft als "Plusrechnung" bezeichnet. In dieser Erklärung erfährst Du, wie Du schriftlich und halbschriftlich addierst, welche Begriffe es gibt, sowie alles zu den Rechenregeln der Addition.Bei der…
Entdecke über 200 Millionen kostenlose Materialien in unserer App
Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmelden\(\definecolor{bl}{RGB}{20, 120, 200}\definecolor{gr}{RGB}{0, 220, 180}\definecolor{r}{RGB}{250, 50, 115}\definecolor{li}{RGB}{131, 99, 226}\definecolor{ge}{RGB}{255, 205, 0}\)Grundlage aller Rechnungen in der Mathematik sind die vier Grundrechenarten. Die Addition ist eine davon und wird wegen ihres Rechenzeichens Plus (+) auch oft als "Plusrechnung" bezeichnet. In dieser Erklärung erfährst Du, wie Du schriftlich und halbschriftlich addierst, welche Begriffe es gibt, sowie alles zu den Rechenregeln der Addition.
Bei der Addition werden zwei oder mehr Zahlen zusammengezählt. Die Zahlen oder Terme, die zusammengerechnet werden, werden Summanden genannt und sind von links nach rechts in der Rechnung durchnummeriert. Das Ergebnis einer Addition von zwei oder mehr Summanden bezeichnet man als Summe.
Abb. 1 - Begriffe der Addition.
Das Ergebnis einer Addition wird als Summe bezeichnet. Dabei ist es egal, ob Terme oder Zahlen addiert werden, solange die letzte durchgeführte mathematische Operation die Addition ist.
Als Summanden werden die einzelnen Zahlen oder Terme in einer Summe bezeichnet. Die Summanden werden von links nach rechts durchnummeriert. Es wird dann vom 1. Summand, 2. Summand, etc. gesprochen.
Besonders bei der Addition mit großen Zahlen, die man nur schwer im Kopf ausrechnen kann, bietet sich es an, die Rechnung schriftlich vorzunehmen. Dabei werden für jede Rechnung die gleichen Schritte vorgenommen.
Bei der schriftlichen Addition gibt es Aufgaben mit Übertrag und ohne Übertrag. Übertrag bedeutet, dass bei einer der Rechnungen, die Zehnerstelle aus der Rechnung vorher mitgenommen werden muss. Das ist immer der Fall, wenn in einer Spalte eine Summe größer als 9 herauskommt. Der Übertrag wird hier in Schritt 4 und 5 besprochen. Wenn es nicht zum Übertrag kommt, kannst Du einfach den Schritten 1–3 folgen.
Schritt | Rechunung |
1. Schreibe die beiden Summanden direkt untereinander. Das heißt Einer unter Einer, Zehner unter Zehner und so weiter. | \begin{array}\,&3&6&1&4\\+&2&7&2&3\\\hline \end{array} |
2. Beginne dann mit der Spalte ganz rechts. Die beiden letzten Zahlen der Summanden werden miteinander addiert und das Ergebnis unter den Strich geschrieben. | \begin{array}\,&3&6&1&{\color{bl}4}\\+&2&7&2&{\color{bl}3}\\\hline&&&&{\color{gr}7}\end{array} |
3. Danach wanderst Du eine Spalte weiter nach links und addierst auch deren Zahlen miteinander. Das Verfahren wiederholst Du von rechts nach links, bis Du bei der letzten Zahl angekommen bist. | \begin{array}\,&3&6&{\color{bl}1}&4\\+&2&7&{\color{bl}2}&3\\\hline&&&{\color{gr}3}&7\end{array} |
4. Wird eine der Summen größer als neun, schreibst Du vom Ergebnis nur die Einerzahl auf und schreibst die Zahl des Zehners eine Spalte weiter vorn klein an. Das Übernehmen der Zehnerstelle wird als Übertrag bezeichnet. | \begin{array}\,&3&{\color{bl}6} &1&4\\+&2_{\color{gr}1}\,&{\color{bl}7}&2&3\\\hline&&3&3&7\end{array}\[{\color{bl}6+7}={\color{gr}1}3\] |
5. Die kleine Zahl, die Du aus der Rechnung vorher mitgenommen hast, addierst Du jetzt auch mit dazu. Die Schritte wiederholst Du, bis Du mit jeder Spalte fertig bist. | \begin{array}\,&{\color{bl}3} &6&1&4\\+&{\color{bl}2} _{\color{gr}\scriptsize 1}\,&7&2&3\\\hline&{\color{ge}6}&3&3&7\end{array}\[{\color{bl}3}+{\color{bl}2} +{\color{gr}1}={\color{ge}6}\] |
Die halbschriftliche Addition ist eine Mischung aus der schriftlichen Addition und dem Kopfrechnen. Dabei wird die Rechnung in mehrere einfachere Teilrechnungen zerlegt. Die halbschriftliche Addition folgt keinen konkreten Regeln, sondern bieten eine Möglichkeit, die eigenen Gedanken bei einer Rechnung festzuhalten.
Beispiele halbschriftliche Additionen | Beispielrechnung |
Vereinfachen der RechnungHierbei wird die eigentliche Rechnung, durch eine simplere Version mit dem gleichen Ergebnis ersetzt | \begin{align}299+457=756\\\hline 300+456 = 756\end{align} |
Zerlegung in EinzelschritteAnstatt einer komplizierten Rechnung wird die Rechnung in leichtere Einzelrechnungen zerlegt | \begin{align}189+437=626\\\hline 189+400 = 589\\589 + 30 = 619\\619+7 = 626\end{align} |
Formulieren einer HilfsaufgabeHier wird die ursprüngliche Aufgabe durch eine simplere, jedoch längere Rechenaufgabe ersetzt | \begin{align}189+437=626\\\hline 200+437 - 11 = 626\end{align} |
Für die Addition gelten zwei allgemeine Rechengesetze:
Du darfst also innerhalb einer Summe die Summanden einfach vertauschen, das Ergebnis bleibt gleich.
Das bedeutet, Teilrechnungen innerhalb der Addition dürfen in beliebiger Reihenfolge ausgeführt werden.
Zu diesen Rechenregeln solltest Du Dir die Artikel zum Assoziativgesetz und Kommutativgesetz genauer ansehen.
Anhand der folgenden Übungsaufgaben kannst Du den gelernten Stoff aus diesem Artikel üben und vertiefen.
Lösung
Zu 1.
Hier kannst Du das Kommutativgesetz anwenden und die Summanden zunächst vertauschen, bevor Du sie addierst. Natürlich kannst Du die Rechnung auch ohne Anwendung des Kommutativgesetzes ausführen.
\[3+8+7=3+7+8=10+8=18\]
Vertauschst Du die Zahlen sinnvoll, kannst Du zuerst die sehr einfache Rechnung \(3+7=10\) rechnen. Zu der 10 ist es jetzt viel leichter die 8 hinzuzuaddieren.
Zu 2.
\[11+5=16\]
Zu 3.
Aufgrund des bei der Addition geltenden Assoziativgesetzes darf hier die Klammer verschoben werden. Damit kann die Reihenfolge der Teilschritte der Rechnung verändert werden.
\[9+14)+6=9+(14+6)=9+20=29\]
Auch hier kannst Du den leichten Teilschritt zuerst rechnen und erhältst somit eine leichte Zahl, mit der man schön weiter rechnen kann.
Zu 4.
Das ist eine schwierige Rechnung, die beim Berechnen im Kopf Schwierigkeiten bereiten kann. Deshalb berechnen wir sie schriftlich.
\begin{array}\,&1 &2&6\\+&{4} _{\scriptsize 1}\,&8&1\\\hline&{6}&0&7\end{array}
Das Ergebnis der Addition von zwei oder mehr Summanden bezeichnet man als Summe.
Begriffe der Addition:
Die Addition ist eine Grundrechenart, bei der zwei oder mehr Zahlen zusammengezählt werden.
Sie besteht aus zwei oder mehr Summanden, das Ergebnis der Rechnung bezeichnet man als (Wert der) Summe.
Bei der Addition werden zwei oder mehr Summanden/Zahlen zusammengezählt.
Die ursprüngliche Zahl wird also um einen bestimmten Wert vergrößert.
Bei komplizierten Rechnungen, kannst du die schriftliche Addition anwenden. Du gehst dabei so vor:
Diese Regeln zur schriftlichen Addition solltest du können und beachten:
Wie möchtest du den Inhalt lernen?
94% der StudySmarter Nutzer erzielen bessere Noten.
Jetzt anmelden94% der StudySmarter Nutzer erzielen bessere Noten.
Jetzt anmeldenWie möchtest du den Inhalt lernen?
Kostenloser mathe Spickzettel
Alles was du zu . wissen musst. Perfekt zusammengefasst, sodass du es dir leicht merken kannst!
Sei rechtzeitig vorbereitet für deine Prüfungen.
Teste dein Wissen mit spielerischen Quizzes.
Erstelle und finde Karteikarten in Rekordzeit.
Erstelle die schönsten Notizen schneller als je zuvor.
Hab all deine Lermaterialien an einem Ort.
Lade unzählige Dokumente hoch und habe sie immer dabei.
Kenne deine Schwächen und Stärken.
Ziele Setze dir individuelle Ziele und sammle Punkte.
Nie wieder prokrastinieren mit unseren Lernerinnerungen.
Sammle Punkte und erreiche neue Levels beim Lernen.
Lass dir Karteikarten automatisch erstellen.
Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.
Melde dich an für Notizen & Bearbeitung. 100% for free.