StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
Americas
Europe
Von geometrischen Körpern wird neben anderen Größen auch oft der Oberflächeninhalt berechnet. Wenn du das Prinzip einmal verstanden hast, ist die Berechnung super leicht, vor allem beim Würfel!Viele Personen haben, wenn sie das Wort Würfel hören, sicherlich einen klassischen Spielwürfel im Kopf. Abbildung 1: SpielwürfelDer Würfel ist im mathematischen Sinn ein dreidimensionaler Körper, der über spezielle Eigenschaften verfügt.Der Würfel ist ein geometrischer Körper,…
Entdecke über 200 Millionen kostenlose Materialien in unserer App
Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenVon geometrischen Körpern wird neben anderen Größen auch oft der Oberflächeninhalt berechnet. Wenn du das Prinzip einmal verstanden hast, ist die Berechnung super leicht, vor allem beim Würfel!
Viele Personen haben, wenn sie das Wort Würfel hören, sicherlich einen klassischen Spielwürfel im Kopf.
Der Würfel ist im mathematischen Sinn ein dreidimensionaler Körper, der über spezielle Eigenschaften verfügt.
Der Würfel ist ein geometrischer Körper, dessen sechs Seitenflächen gleich große Quadrate sind. Angrenzende Flächen stehen aufeinander senkrecht.Damit ist ein Würfel ein Quader, dessen Kanten alle gleich lang sind.
Im Würfel werden die acht Eckpunkte klassischerweise von A bis H benannt. Die identische Kantenlänge aller zwölf Kanten des Würfels wird mit a bezeichnet.
Die sechs Seitenflächen des Würfels sind also gleich groß, quadratisch und stehen aufeinander senkrecht. Dies ist wichtig für die Berechnung des Oberflächeninhaltes.
Zunächst klären wir, was du dir allgemein unter der Oberfläche eines Körpers und ihrem Inhalt vorstellen kannst.
Bei der Oberfläche eines Körpers handelt es sich um die Hülle oder den Rand des Körpers.
Anschaulich ist auf der Oberfläche alles, was du anmalen müsstest, wenn du einen Körper in eine bestimmte Farbe färben willst.
Als Oberfläche einer Figur bezeichnet man die Flächen der Figur, die sie nach außen begrenzen.
Die Formen der Oberflächen von verschiedenen Körpern sehen unterschiedlich aus. Wie jede Fläche hat auch die Oberfläche eines Körpers einen Flächeninhalt. Dieser lässt sich je nach Form der Fläche mehr oder weniger leicht berechnen. Oft wird die Fläche in mehrere Teilflächen unterteilt, deren jeweiligen Flächeninhalt man leicht berechnen kann, wie beispielsweise Dreiecke oder besondere Vierecke. Addiert man jeweils den Flächeninhalt der einzelnen Teilflächen, erhält man den Flächeninhalt der Oberfläche der Figur.
Körpernetze, wie du sie vom Würfel oder vom Quader kennst, sind gängige Darstellungen für die Oberfläche von geometrischen Figuren. Mehr zum Körpernetz des Würfels erklären wir dir im nächsten Abschnitt.
Wenn man die Oberfläche des Würfels berechnen möchte, muss man sich überlegen, aus welchen Teilflächen sie sich zusammensetzt. Dabei ist das Netz des Würfels eine große Hilfe.
Wenn man einen Würfel kippt und jeweils nacheinander alle sechs Würfelseiten aufzeichnet, entsteht ein klassisches Würfelnetz.
Ein Würfelnetz kannst du dir vorstellen wie eine Bastelvorlage für einen Papierwürfel: Wenn du das Netz ausschneidest und die Flächen entsprechend klappst, entsteht daraus ein Würfel.
Ein Würfelnetz muss nicht genau aussehen, wie das in Abbildung 3. Wichtig ist nur, dass sich daraus ein Würfel falten lässt.
Falls du dich jetzt fragen solltest, wie viele unterschiedliche Möglichkeiten es gibt, ein Würfelnetz zu zeichnen: Es sind genau 11 Stück! Kommst du auf diese?
Das Würfelnetz ist wie oben bereits erwähnt eine Darstellung des Oberflächeninhalts des Würfels. Denn die Oberfläche des Würfels besteht genau aus den sechs Würfelseiten, aus denen sich das Würfelnetz zusammensetzt.
Um den Oberflächeninhalt des Würfels zu berechnen, muss also der Flächeninhalt der sechs Würfelseiten berechnet werden. Da aufgrund der Würfeleigenschaften alle sechs Seitenflächen des Würfels gleich groß sind, genügt es, den Flächeninhalt einer Würfelseite zu berechnen und mal sechs zu nehmen.
Den Flächeninhalt einer Seitenfläche berechnet man mit der Formel für den Flächeninhalt eines Quadrates mit Seitenlänge a.
Es gilt:
Damit können wir uns die Formel für den Oberflächeninhalt des Würfels herleiten:
Der Oberflächeninhalt eines Würfels mit Kantenlänge a berechnet sich mit
Dabei steht wie oben beschrieben das für den Flächeninhalt einer Seitenfläche. Dieser Flächeninhalt wird mal 6 genommen, weil der Würfel ja sechs dieser gleich großen Seitenflächen besitzt.
Wichtig zu wissen ist außerdem, dass der Oberflächeninhalt eines Würfels immer eine quadratische Einheit besitzt, da es sich dabei ja um eine Fläche handelt. Mögliche Einheiten des Flächeninhalts sind beispielsweise , oder . Ergibt deine Berechnung für den Oberflächeninhalt eine Lösung ohne Längeneinheit im Quadrat, solltest du also deinen Rechenweg noch einmal überprüfen!
Berechne den Oberflächeninhalt eines Würfels mit Kantenlänge .
Verwende für die Berechnung die angegebene Formel
Der gegebene Würfel hat die Seitenlänge . Für die Berechnung des Oberflächeninhalts setzen wir daher diesen Wert in die obige Formel ein.Somit gilt:
In diesem Kapitel zeigen wir dir mehrere klassische Aufgaben, die im Zusammenhang mit dem Oberflächeninhalt des Würfels häufig gestellt werden.
Natürlich kann die Formel des Oberflächeninhalts auch nach der Seitenlänge a umgestellt werden. Dadurch kann aus gegebenem Oberflächeninhalt die Seitenlänge eines Würfels berechnet werden.
Ein Würfel hat einen Oberflächeninhalt von . Wie lang ist eine Kante des Würfels?
Bei dieser Aufgabe ist nun der Oberflächeninhalt bereits gegeben. Mit der üblichen Formel gilt:
Division durch 6 ergibt
Daraus folgt durch Wurzelziehen, dass
´
Aufgaben im Zusammenhang mit dem Oberflächeninhalt des Würfels beinhalten auch oft allgemeinere Fragen. In fast jedem Mathebuch wird gefragt, wie sich eine Veränderung der Kantenlänge des Würfels auf seinen Oberflächeninhalt auswirkt.
Ein Würfel hat Kantenlänge a. Wie verändert sich sein Oberflächeninhalt, wenn die Kantenlänge verdoppelt wird?
Diese Aufgabe erscheint auf den ersten Blick ein wenig komplexer, weil keine konkreten Zahlen angegeben sind. Aber keine Sorge – oft macht das eine Rechnung auch leichter!
Berechnen wir zunächst den Oberflächeninhalt des ursprünglichen Würfels.
Betrachten wir nun den Würfel mit der doppelten Kantenlänge. Die Kantenlänge dieses Würfels beträgt also oder kurz .
Auch von diesem Würfel berechnen wir mit unserer üblichen Formel.
Achte hier unbedingt darauf, dass die gesamte Kantenlänge 2a in den Klammern steht und quadriert wird. Dies ist auch genau die Idee der Aufgabe!
Das bedeutet, dass sich der Oberflächeninhalt des Würfels durch Verdopplung der Kantenlänge vervierfacht!
(Dies erkennst du daran, dass )
In der Vertiefung findest du eine verallgemeinerte Aufgabe der obigen Form, die etwas anspruchsvoller, aber mit etwas Einsatz gut verständlich ist.
Dein großer Bruder erklärt dir mit Blick auf deine Hausaufgabe (Aufgabe 3), dass man solche Aufgaben auch allgemein, das heißt für eine beliebige Ver-x-fachung der Kantenlänge, lösen kannst. Er gibt dir 10 Minuten Zeit, die Aufgabe allgemein zu lösen.
Versuche herauszufinden, was dein Bruder meint. Die Frage ist, wie sich eine Ver-x-fachung der Kantenlänge auf den Oberflächeninhalt eines Würfels auswirkt.
Die Ver-x-fachung einer Länge bedeutet, dass die vorherige Länge mal x genommen wird. X steht dabei als Variable für eine beliebige natürliche Zahl. Ist , handelt es sich um eine Verdoppelung, bei um eine Vervierfachung usw.
Beginne wie oben. Ein Würfel mit Kantenlänge a hat den Oberflächeninhalt:
Wird nun die Kantenlänge ver-x-facht, das heißt mal x genommen, beträgt sie .
Der Oberflächeninhalt des Würfels mit Kantenlänge beträgt
Um die Veränderung auszurechnen, werden die beiden Oberflächeninhalte dividiert:
Das bedeutet, dass sich durch eine Ver-x-fachung der Kantenlänge der Oberflächeninhalt eines Würfels im Allgemeinen Ver--facht.
Genau deshalb hat sich auch eine Verdopplung der Kantenlange mit zu einer Vervierfachung des Oberflächeninhalts geführt: .
Manchen von euch wird eventuell die Aufgabe begegnen, wie man die Kantenlänge eines Würfels verändern muss, um die Oberfläche eines Würfels zu verdoppeln.
Ein erster Würfel hat die Kantenlänge . Wie lang ist die Kante eines zweiten Würfels mit dem doppelten Oberflächeninhalt des ersten Würfels?
Berechne zunächst den Oberflächeninhalt des ersten Würfels mit Kantenlänge .
Ein Würfel, der den doppelten Oberflächeninhalt dieses Würfels besitzt, hat dementsprechend den Oberflächeninhalt
Berechne dazu nun die entsprechende Kantenlänge b dieses Würfels:
Division durch 6 ergibt
Daraus folgt, dass
Der zweite Würfel, der einen doppelt so großen Oberflächeninhalt wie der Würfel mit Kantenlänge besitzt, hat ungefähr die Seitenlänge .
Die Kantenlänge eines Würfels kann man berechnen, wenn man sein Volumen oder seinen Oberflächeninhalt gegeben hat. Dazu muss man die jeweilige Formel entsprechend nach der Kantenlänge auflösen und die gegebenen Größen einsetzen.
Die Oberfläche eines Würfels berechnet man, indem man den Flächeninhalt einer der Seitenflächen berechnet und mal sechs nimmt. Der Oberflächeninhalt ergibt sich dadurch mit O=6•a•a. Das Volumen berechnet man, indem man die Grundfläche mit der Höhe des Würfels multipliziert. Aufgrund der Eigenschaften des Würfels erhält man V = a•a•a.
Ist der Oberflächeninhalt eines Würfels gegeben, kann man daraus leicht die Kantenlänge berechnen. Man stellt dazu einfach die Formel O=6•a•a nach a um. Dazu teilt man den Oberflächeninhalt durch 6 und nimmt vom Ergebnis die Wurzel, um die Kantenlänge a zu erhalten.
Wie sich die Oberfläche eines Würfels verändert, kommt auf die Veränderung der Kantenlänge an. Dazu muss jeweils der Oberflächeninhalt des ursprünglichen Würfels und des Würfels mit der veränderten Kantenlänge verglichen werden. Beispielsweise ergibt eine Verdoppelung der Kantenlänge eine Vervierfachung des Oberflächeninhalts. Allgemein ergibt eine Ver-x-fachung der Kantenlänge eine Ver-x•x-fachung des Oberflächeninhaltes.
der Nutzer schaffen das Oberflächeninhalt Würfel Quiz nicht! Kannst du es schaffen?
Quiz startenWie möchtest du den Inhalt lernen?
94% der StudySmarter Nutzer erzielen bessere Noten.
Jetzt anmelden94% der StudySmarter Nutzer erzielen bessere Noten.
Jetzt anmeldenWie möchtest du den Inhalt lernen?
Kostenloser mathe Spickzettel
Alles was du zu . wissen musst. Perfekt zusammengefasst, sodass du es dir leicht merken kannst!
Sei rechtzeitig vorbereitet für deine Prüfungen.
Teste dein Wissen mit spielerischen Quizzes.
Erstelle und finde Karteikarten in Rekordzeit.
Erstelle die schönsten Notizen schneller als je zuvor.
Hab all deine Lermaterialien an einem Ort.
Lade unzählige Dokumente hoch und habe sie immer dabei.
Kenne deine Schwächen und Stärken.
Ziele Setze dir individuelle Ziele und sammle Punkte.
Nie wieder prokrastinieren mit unseren Lernerinnerungen.
Sammle Punkte und erreiche neue Levels beim Lernen.
Lass dir Karteikarten automatisch erstellen.
Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.
Melde dich an für Notizen & Bearbeitung. 100% for free.