Select your language

Suggested languages for you:
Log In Anmelden
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Die All-in-one Lernapp:

  • Karteikarten
  • NotizenNotes
  • ErklärungenExplanations
  • Lernpläne
  • Übungen
App nutzen

Flächeninhalt Kreis

Save Speichern
Print Drucken
Edit Bearbeiten
Melde dich an und nutze alle Funktionen. Jetzt anmelden
Flächeninhalt Kreis

Im Mittelalter dachten die Menschen, die Erde wäre eine Scheibe. Sie gingen also davon aus, dass die Erde eine zweidimensionale Fläche mit einer Begrenzung war. Mittlerweile wissen wir, dass diese Annahme nicht der Wahrheit entspricht und die Erde eine Kugel ist.

Flächeninhalt Kreis Flaticon Erde StudySmarter

Aber stell Dir vor, die Erde wäre wirklich eine Scheibe, also eine Kreisfläche — wie weit müsste eine Person laufen, um die gesamte Erdscheibe komplett abzulaufen? Dafür muss eigentlich nur der Flächeninhalt dieses Kreises berechnet werden. Wie die Formel dazu lautet und wie Du sie anwendest, erfährst Du in diesem Artikel.

Flächeninhalt Kreis – Erklärung

Wenn Du mit Deinem Zirkel eine Kreislinie um einen Mittelpunkt M zeichnest und den Kreis ausmalst, so entspricht der ausgemalte Bereich dem Flächeninhalt des Kreises. Der Flächeninhalt A des Kreises gibt genau an, wie viel Fläche Du bei einem Kreis mit dem Radius r bemalen kannst.

Flächeninhalt Kreis Flächeninhalt Kreis StudySmarterAbbildung 1: Flächeninhalt Kreis

Bei Kreisen handelt es sich um zweidimensionale geometrische Figuren. Vom Mittelpunkt M ausgehend wird der Abstand zu einem Punkt auf der äußeren Kreislinie als Radius r bezeichnet. Der Abstand von auf dem Kreis gegenüberliegenden Punkten durch den Mittelpunkt M entspricht dem Durchmesser d.

Der Flächeninhalt A eines Kreises ist das Maß für die Größe der Kreisfläche. Er ist abhängig vom Radius r beziehungsweise dem Durchmesser d.

Der Flächeninhalt wird mit dem Großbuchstaben A abgekürzt und beispielsweise in (Quadratmillimeter), (Quadratzentimeter), (Quadratmeter) oder (Quadratkilometer) angegeben.

Flächeninhalt Kreis berechnen – Formel

Es gibt zwei Möglichkeiten, den Flächeninhalt eines Kreises zu berechnen: mithilfe des Radius r oder anhand des Durchmessers d. Bei beiden Berechnungen brauchst Du die unendliche Kreiszahl π.

π (Pi) ist eine Konstante. Oft wird auch ihr gerundeter Wert von 3,14 oder sogar 3 verwendet, besonders wenn Berechnungen ohne Taschenrechner durchgeführt werden.

Zwischen den Größen der Kreiszahl Pi und dem Radius r (oder dem Durchmesser d) besteht folgender Zusammenhang:

Berechnung des Flächeninhalts einer Kreisfläche mit dem Radius oder dem Durchmesser :

Flächeninhalt Kreis Formel Flächeninhalt Radius StudySmarter

oder

Flächeninhalt Kreis Formel Flächeninhalt Durchmesser StudySmarter

Du benötigst demnach lediglich den Radius r oder den Durchmesser d, um den Flächeninhalt eines beliebigen Kreises zu berechnen. Radius und Durchmesser sind voneinander abhängig und können daher auch wie folgt einzeln berechnet werden:

Flächeninhalt Kreis berechnen – Herleitung

Stell Dir vor, Du hast einen Kreis und teilst diesen in viele gleich große Stücke auf, wie z. B. bei einem Glücksrad oder Kuchen. In Abbildung 2 findest Du eine Einteilung des Kreises in insgesamt 12 Stücke.

Flächeninhalt Kreis Herleitung Kreis StudySmarterAbbildung 2: Kreis in Stücke

Werden diese 12 Stücke einzeln aus dem Kreis entfernt und Stück für Stück aneinandergesetzt, so lässt sich annähernd die Figur eines Rechtecks bilden. Mit 12 Stücken sind die einzelnen Stücke an den Seiten noch etwas rundlich. Damit sie annähernd gerade sind, werden noch weitere und kleinere Stücke benötigt.

Je mehr kleinere Stücke aneinander gelegt werden, desto besser bildet sich die Form eines Rechtecks.

Im Falle der 12 Stücke aus dem Beispiel könnte die Aneinanderreihung wie in Abbildung 3 aussehen. Ein Stück muss dabei zerteilt werden, damit an den Seiten eine gerade Kante zu sehen ist.

Flächeninhalt Kreis Herleitung Kreis StudySmarterAbbildung 3: Kreisstücke als Rechteck

Der Flächeninhalt dieses Rechtecks kann also annähernd mit der Formel für die Fläche eines Rechtecks berechnet werden:

In diesem Fall entspricht die Breite b des Rechtecks dem Radius r des Kreises, da ein Stück immer von der Mitte ausgeschnitten wird. Deshalb kannst Du in der Gleichung die Breite b durch den Radius r ersetzen:

Die Länge des Rechtecks entspricht ungefähr dem halben Umfang. In Abbildung 3 sind die Außenkanten der Kreisstücke sind oben und unten zu sehen. Insgesamt entsprechen die Kanten dem gesamten Umfang U. Da aber für die Berechnung nur eine Seite relevant ist, muss der Umfang halbiert werden. Du kannst also die Länge l in der Formel mit dem halben Umfang U ersetzen:

Nun setzt Du für der Umfang U die entsprechende Formel ein.

Zur Erinnerung: Der Umfang U eines Kreises berechnet sich durch: .

Durch Einsetzen der Formel und Wegkürzen ergibt sich:

So lässt sich die Formel zur Berechnung des Flächeninhalts eines Kreises herleiten.

Damit in der Formel der Durchmesser d statt des Radius r angegeben ist, kannst Du r durch einen Ausdruck des Durchmessers d ersetzen, und zwar:

Umgeformt ergibt sich für den Flächeninhalt eines Kreises:

Kreis vs. Kugel

Auch von einer Kugel können der Radius r, der Durchmesser d und der Umfang U (blaue Linie) berechnet werden. Dafür werden dieselben Formeln benutzt, wie auch bisher bei der Kreisfläche. Bei einer Kugel wird der sogenannte Oberflächeninhalt O berechnet, also die gesamte Fläche, die sich um die Kugel legt. Dies entspricht der orangefarbenen Markierung der Kugel in Abbildung 4.

Flächeninhalt Kreis Kugel StudySmarterAbbildung 4: Kugel

Dieser gesamte Oberflächeninhalt ist abhängig vom Radius r bzw. Durchmesser d. Berechnet werden kann er mithilfe folgender Formel:

Möchtest Du mehr zu der Herleitung dieser Formel erfahren? Dann lies gerne den Artikel "Kugel"!

Kreisfläche berechnen – Einfach erklärt

Je nach Aufgabenstellung hast Du verschiedene Informationen gegeben. Das kann beispielsweise der Radius r sein, der Durchmesser d oder sogar der Umfang U eines Kreises. Um den Flächeninhalt A der Kreisfläche berechnen zu können, kannst Du Dich verschiedener Formeln bedienen.

Kreisfläche berechnen mit dem Radius

In diesem Beispiel kannst Du den Flächeninhalt eines Kreises mit dem Radius und der dazu passenden Formel berechnen.

Aufgabe 1

Berechne den Flächeninhalt A eines Kreises mit dem Radius .

Lösung

Schreibe als Erstes die Formel auf. In diesem Fall ist der Radius gegeben:

Setze als Nächstes den Wert für den Radius, in diesem Fall , ein:

Zuletzt berechne das Ergebnis mit dem Taschenrechner:

Darfst Du keinen Taschenrechner benutzen oder hast keine Taste für Pi, so kannst Du bei der Berechnung des Flächeninhalts auch auf den gerundeten Wert von 3,14 zurückgreifen. Das ist aber abhängig von der Aufgabenstellung.

Der Flächeninhalt A eines Kreises mit dem Radius beträgt also gerundet .

Zusammengefasst besteht diese Berechnungsart also aus drei Schritten:

  • Formel aufschreiben
  • Werte einsetzen
  • Ergebnis ausrechnen

Flächeninhalt einer Kreisfläche mit Radius berechnen:

Flächeninhalt Kreis Formel mit Radius StudySmarter

Kreisfläche berechnen mit dem Durchmesser

In diesem Beispiel wird der Flächeninhalt eines Kreises mit dem Durchmesser und der dazu passenden Formel berechnet.

Aufgabe 2


Berechne den Flächeninhalt A eines Kreises mit dem Durchmesser .

Lösung

Als Erstes wird die passende Formel ausgesucht. Da der Durchmesser gegeben ist, wird folgende Formel gewählt:

Im nächsten Schritt setzt Du den gegebenen Wert, also , in die Formel ein:

Zum Schluss kannst Du das Ergebnis mit dem Taschenrechner ausrechnen:

Da π eine unendliche Zahl ist, hat auch das Ergebnis der Berechnung sehr viele Nachkommastellen. Hier wurde das Ergebnis auf zwei Nachkommastellen gerundet.

Der Flächeninhalt A eines Kreises mit dem Durchmesser beträgt gerundet .

Zusammengefasst besteht diese Berechnungsart aus drei Schritten:

  • Formel aufschreiben
  • Werte einsetzen
  • Ergebnis ausrechnen

Flächeninhalt einer Kreisfläche mit Durchmesser berechnen:

Flächeninhalt Kreis Formel mit Durchmesser StudySmarter

Kreisfläche berechnen mit dem Umfang

Bei manchen Aufgaben in der Geometrie kann es sein, dass Du Dir anhand einer weiteren Formel verschiedene Angaben herleiten musst. In der folgenden Aufgabenstellung sollst Du eine Kreisfläche berechnen, hast aber lediglich den Umfang U eines Kreises gegeben.

Aufgabe 3

Gegeben ist der Umfang eines Kreises. Berechne den Flächeninhalt der Kreisfläche.

Lösung

Zuerst schreibst Du die Formel für den Umfang eines Kreises auf:

Diese Formel sowie weitere Infos zum Thema Umfang findest Du im Artikel Umfang eines Kreises.

Als Nächstes stellst Du die Formel um, sodass Du den Radius r ausrechnen kannst:

Jetzt kannst Du die Formel für die Berechnung des Flächeninhalts eines Kreises mit dem Radius aufschreiben.

Da die Formel des Umfangs oben umgestellt wurde, setzt Du nun die umgestellte Formel in die Formel des Flächeninhalts ein:

Nach Vereinfachen der Gleichung ergibt sich:

Zum Schluss kannst Du den gegebenen Wert von für den Umfang U einsetzen und das Ergebnis ausrechnen:

Der Flächeninhalt A eines Kreises mit dem Umfang beträgt circa .

Zusammengefasst besteht diese Berechnungsart aus sechs Schritten:

  • Formel für den Umfang U aufschreiben
  • Formel nach dem Radius r umstellen
  • Formel für Flächeninhalt A mit dem Radius r aufschreiben
  • Den Radius r aus der umgestellten Formel für den Radius r der Formel des Flächeninhalts A einsetzen
  • Werte einsetzen
  • Ergebnis ausrechnen

Flächeninhalt einer Kreisfläche mit Umfang berechnen:

Flächeninhalt Kreis Formel mit Umfang StudySmarter

Mit diesen Formeln lässt sich der Flächeninhalt der gesamten Kreisfläche berechnen. Was aber, wenn lediglich ein Teil der Kreisfläche berechnet werden soll? Dann handelt es sich um sogenannte Kreisausschnitte bzw. Kreissektoren.

Flächeninhalt von Kreissektoren

Wird nur ein Teil der Kreisfläche betrachtet, handelt es sich um einen Kreisausschnitt. Das kannst Du Dir wie ein Kuchenstück vorstellen. Ein Kreissektor ist beispielsweise die hellblau markierte Fläche in Abbildung 5.

Flächeninhalt Kreis Kreissektor StudySmarterAbbildung 5: Kreissektor

Zusätzlich zum Radius r des Kreises, gibt es noch den Kreisbogen b und den Winkel . Diese geben an, wie groß der Ausschnitt des Kreises ist. Für einen Winkel von z. B. erhältst Du einen Halbkreis.

Die Formel für den Flächeninhalt einer kompletten Kreisfläche muss für die Berechnung des Kreissektors um einen Ausdruck mit dem Winkel erweitert werden.

Flächeninhalt eines Kreissektors mit dem Radius und dem Winkel :

Flächeninhalt Kreis Formel Flächeninhalt Kreissektor StudySmarter

Flächeninhalt Kreis – Aufgaben

Im Folgenden findest Du Übungsaufgaben zur Berechnung von Kreisflächen sowie deren Lösungen.

Aufgabe 4

Eine Stofftasche wird mit verschiedenfarbigen Kreisen bestückt. Dafür muss die Menge des Stoffes berechnet werden.

Flächeninhalt Kreis Flaticon Tasche StudySmarter

Es werden 3 verschiedene Kreisscheiben mit folgenden Angaben aufgenäht:

1. Kreis:

2. Kreis:

3. Kreis:

Lösung

1. Kreis

Bei der ersten Kreisscheibe ist der Durchmesser d angegeben. Daher benötigst Du folgende Formel für den Flächeninhalt A:

Als Nächstes kannst Du den Wert für den Durchmesser d in die Formel einfügen:

2. Kreis

Beim zweiten Kreis kannst Du die Kreisfläche entsprechend der Formel mit dem Radius r berechnen:

3. Kreis

Hier benötigst Du die Formel für den Umfang eines Kreises. Danach werden die Zahlenwerte eingesetzt und ausgerechnet:

4. Flächeninhalte addieren:

Um die gesamte Menge an Stoff zu berechnen, müssen alle Flächen der drei Kreise zusammengerechnet werden:

Für die Kreisscheiben werde ca. Stoff benötigt.

Aufgabe 5

Angenommen, die Erde könnte als Scheibe betrachtet werden — wie groß ist Distanz von einer Seite zur anderen Seite der Erdscheibe? Die Fläche der Erdscheibe wird auf etwa geschätzt.

Flächeninhalt Kreis Flaticon Erde StudySmarter

Lösung

Die längste Distanz in der Mitte der Erdscheibe entspricht dem Durchmesser d des Kreises. Für die Berechnung benötigst Du also die Formel zur Berechnung des Flächeninhalts eines Kreises mit dem Durchmesser:

Der Flächeninhalt A ist in der Aufgabenstellung gegeben. Ermittelt werden soll der Durchmesser d, weshalb die Formel umgestellt werden muss:

Jetzt musst Du nur noch den Flächeninhalt aus der Angabe in die Formel einsetzen und das Ergebnis berechnen:

Der Durchmesser d der Erdscheibe beträgt demnach .

Kreisflächen, ob groß oder klein, kannst Du mithilfe des Radius r bzw. des Durchmessers d berechnen. Achte immer darauf, welche Angaben in der Aufgabe gegeben sind und wähle dann die entsprechende Formel aus.

Flächeninhalt eines Kreises – Das Wichtigste auf einen Blick

  • Der Flächeninhalt A einer Kreisfläche ist abhängig vom Radius r bzw. dem Durchmesser d des Kreises.
  • Für den Flächeninhalt A der Kreisfläche mit dem Radius r gilt:
  • Für den Flächeninhalt A der Kreisfläche mit dem Durchmesser d gilt:
  • Für eine Kreisfläche mit dem Flächeninhalt A und dem Umfang U gilt:
  • Für den Flächeninhalt A eines Kreissektors gilt:

Häufig gestellte Fragen zum Thema Flächeninhalt Kreis

Zur Berechnung des Flächeninhalts einer Kreisfläche mit dem Durchmesser wird folgende Formel benötigt: A = 0,25 • π • d2

Da ein Kreisausschnitt, auch Kreissektor genannt, abhängig von der Größe des Winkels α ist, gilt:

A = π • r2 • (α : 360°)

Die Kreisfläche ist abhängig von dessen Radius r bzw. dessen Durchmesser d.

Es gilt: A = π • r2 bzw.  A = 0,25 • π • d2

Da ein Kreisring aus einer großen Kreisfläche besteht, aus dem eine kleinere Kreisfläche ausgeschnitten wurde, gilt:

A = Agroß - Aklein 


A = π • rg2 - π • rk2

Finales Flächeninhalt Kreis Quiz

Frage

Entscheide, welche Aussage korrekt ist.

Antwort anzeigen

Antwort

Der Flächeninhalt A eines Kreises ist abhängig vom Radius r, aber nicht vom Durchmesser d eines Kreises.

Frage anzeigen
Mehr zum Thema Flächeninhalt Kreis
60%

der Nutzer schaffen das Flächeninhalt Kreis Quiz nicht! Kannst du es schaffen?

Quiz starten

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Melde dich an für Notizen & Bearbeitung. 100% for free.