StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
Americas
Europe
In einem dreidimensionalen Koordinatensystem werden unter anderem geometrische Formen dargestellt. Eines davon ist der Spat. Um diese Form zu berechnen, benötigst Du Vektoren, genauer gesagt, das Spatprodukt. Wie das geht und was Du dabei beachten solltest, lernst Du in diesem Artikel.
Entdecke über 50 Millionen kostenlose Lernmaterialien in unserer App.
Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenIn einem dreidimensionalen Koordinatensystem werden unter anderem geometrische Formen dargestellt. Eines davon ist der Spat. Um diese Form zu berechnen, benötigst Du Vektoren, genauer gesagt, das Spatprodukt. Wie das geht und was Du dabei beachten solltest, lernst Du in diesem Artikel.
Ein Spat ist ein geometrischer Körper, der sechs Parallelogramme als Seitenflächen besitzt. Die gegenüberliegende Parallelogramme sind immer kongruent zueinander und liegen in parallelen Ebenen. Ein Spat ist also ein besonderes Prisma mit Parallelogrammen als Grundseiten
Zwei Figuren sind zueinander kongruent, wenn Du die eine Figur mit der anderen zur Deckung bringen kannst.
Mithilfe des Spatprodukts kannst Du das Volumen von einem Spat, der von drei Vektoren aufgespannt wird, berechnen.
Formel eines Spatprodukts:
Die drei Vektoren \(\vec a\), \(\vec b\) und \(\vec c\) spannen den Spat auf. Das Volumen berechnest Du mit der Formel:
\[V_{Spat} = \left|\left( {\vec a}\times {\vec b}\right)\circ \vec c\right|\]
Abbildung 1: Spat
Bisher ging es nur um das Theoretische, in diesem Teil wirst Du deshalb lernen, wie diese Formel in der Praxis, also in der Berechnung von Volumen, verwendet wird und auf welche Art Du das Spatprodukt noch berechnen kannst.
Das Spatprodukt besteht aus einem Kreuzprodukt und einem Skalarprodukt. Der Wert der Berechnung entspricht dem Volumen Deines Spats.
Falls Du nicht mehr genau wie Du mit Vektoren rechnest, dann schau doch erneut bei den Erklärungen zu Skalarprodukt und Kreuzprodukt vorbei.
Ein Spat wird von den drei Vektoren \(\begin{pmatrix}-4\\3\\2\end{pmatrix}\) , \(\begin{pmatrix}1\\1\\-1\end{pmatrix}\) und \(\begin{pmatrix}2\\1\\1\end{pmatrix}\) aufgespannt. Um das Volumen zu berechnen, wird die folgende Formel benutzt:
\[V_{Spat} = \left|\left( {\vec a}\times {\vec b}\right)\circ \vec c\right|\]
Abbildung 1: Spat
Durch Einsetzen in die Formel erhältst Du
\begin{align} V_{Spat} &= \left|\left( {\vec a}\times {\vec b}\right)\circ \vec c\right|\\ &= \left|\left( {\begin{pmatrix}-4\\3\\2\end{pmatrix} }\times {\begin{pmatrix}1\\1\\-1\end{pmatrix} }\right)\circ \begin{pmatrix}2\\1\\1\end{pmatrix} \right| \end{align}
Zuerst wird das Kreuzprodukt berechnet:
\begin{align} V_{Spat}&= \left|\left( {\begin{pmatrix}-4\\3\\2\end{pmatrix} }\times {\begin{pmatrix}1\\1\\-1\end{pmatrix} }\right)\circ \begin{pmatrix}2\\1\\1\end{pmatrix} \right| \\&= \left|\begin{pmatrix}-5\\-2\\-7\end{pmatrix}\circ \begin{pmatrix}2\\1\\1\end{pmatrix} \right| \end{align}
Schließlich wird das Skalarprodukt berechnet und der Betrag genommen:
\begin{align} V_{Spat}&= \left|\begin{pmatrix}-5\\-2\\-7\end{pmatrix}\circ \begin{pmatrix}2\\1\\1\end{pmatrix} \right|\\&=|-5\cdot2+(-2)\cdot 1+(-7)\cdot 1|\\&=|-19|\\&=19 \end{align}
Das Volumen des Spats beträgt also 19 VE.
VE steht für Volumeneinheit. In der Berechnung war das Koordinatensystem einheitslos. Um dennoch zu verdeutlichen, dass es sich um ein Volumen handelt, wird in der Mathematik häufig die „Volumeneinheit“ benutzt.
Neben der klassischen Formel kann das Spatprodukt auch mit der Determinante berechnet werden. Wie das geht, siehst Du hier.
Es soll der Spat betrachtet werden, der von den drei Vektoren \(\begin{pmatrix}-4\\3\\2\end{pmatrix}\) , \(\begin{pmatrix}1\\1\\-1\end{pmatrix}\) und \(\begin{pmatrix}2\\1\\1\end{pmatrix}\) aufgespannt wird.
Berechnung mit Determinante
Das Spatvolumen lässt sich mit der Determinante mit folgender Methode berechen.
1. Matrix aufstellen mit den drei Vekotren als Spalten
\[M=\begin{pmatrix}a_1 \,b_1 \,c_1\\a_2\, b_2\, c_3\\a_3\, b_3\, c_3\end{pmatrix}\]
2. Die Determinante berechnen z.B. mit dem Satz von Sarrus
3. Der Betrag der Determinante entspricht dem gesuchten Volumen
\[V=|\det(M)|\]
Zurück zum Beispiel. Die Matrix, dessen Determinante berechnet werden soll lautet
\[M=\begin{pmatrix}a_1 \,b_1 \,c_1\\a_2\, b_2\, c_3\\a_3\, b_3\, c_3\end{pmatrix}=\begin{pmatrix}-4 &1 &2\\3& 1& 1\\2& -1& 1\end{pmatrix}\]
Die Derminante berchnest Du mit einem System Deiner Wahl hier wird der Satz von Sarrus genutzt:
\begin{align}\det(M)&= -4\cdot 1\cdot 1+1\cdot 1\cdot 2+2\cdot 3\cdot(-1) -2\cdot 1\cdot 2 - (-1)\cdot 1\cdot (-4)-1\cdot 3\cdot 1\\&=-4+2-6-4-4-3\\&=-19\end{align}
Das Spatvolumen ist jetzt der Betrag der Derminante also \(|-19|=19\)
Beim Satz des Sarrus kannst Du die Determinante für 3 × 3 Matrizen berechnen, indem Du die erste und die zweite Spalte noch mal hinter die Matrix schreibst und die Diagonalen bildest. Die Diagonalen von links unten bis rechts oben werden einzeln multipliziert und dann addiert, die Diagonalen von links oben nach rechts unten werden auch multipliziert und dann subtrahiert. Genaueres zur Ausführung findest Du in der Erklärung Determinanten.
Die Herleitung für das Spatprodukt folgt aus der vektoriellen Darstellung einer altbekannten Formel aus der Geometrie. Jeder Spat ist ein Prisma und das Volumen eines Prismas berechnet sich mit:\[V_{Prisma}=A_g\cdot h\]
\(A_g\) ist die Grundfläche und \(h\) die Höhe des Prismas.
Abbildung 2: Grundfläche und Höhe eines Spats
Die Grundfläche eines Spats ist ein Parallelogramm. Um den Flächeninhalt dieses Parallelogramms zu berechnen, wird der Betrag des Kreuzprodukts der beiden Vektoren genommen, die das Parallelogramm aufspannen. Diese beiden Vektoren heißen im Folgenden \(\vec a\) und \(\vec b\). Es gilt allgemein \[A_{Parallelogramm}=|\vec a \times \vec b|=\sin(\alpha)|\vec a| |\vec b|\]
Die rechte Seite entspricht also genau der geometrischen Definition für den Flächeninhalt eines Parallelogramms mit den Seiten a und b und dem Winkel \(\alpha\) zwischen den Seiten.
Jetzt brauchst Du nur noch die Höhe auf der Grundfläche. Diese berechnet sich, indem Du den Vektor \(\vec c\) auf die Richtung des Normalenvektors der Grundfläche projizierst. Das Ganze lässt sich auch wieder geometrisch herleiten.
Die gesuchte Höhe \(h\) lässt sich berechnen als \[h=\cos(\alpha)\cdot |\vec c|\] wobei \(\alpha\) der Winkel ist, den die Normale mit \(\vec n\) einschließt. Außerdem gilt die folgende Definition für das Skalarprodukt \[\cos(\alpha){|\vec n| |\vec c|}=\vec n \circ \vec c\]
Zusammenführen der Formeln führt zu
\begin{align} V_{Spat}&=A_g\cdot h\\&= |\vec n|\cdot |\vec c| \cdot \cos(\alpha)\\&= \vec n \circ \vec c\\&=(\vec a\times \vec b)\circ \vec c\end{align}
Das entspricht exakt der Formel aus der Definition und die Herleitung ist fertig.Wenn Du ein Spat in zwei gleiche Teile teilst, erhältst Du zwei volumengleiche dreieckige Prismen. In anderen Worten, das Volumen eines dreieckigen Prismas, das durch die gleichen Vektoren aufgespannt wird, wie der Spat, ist halb so groß wie das des Spats.
Das Volumen eines Prismas mit dreieckiger Grundfläche ist gegeben als das halbe Volumen eines Spats. Damit gilt:\[V = \frac{1}{2}|(\vec a \times \vec b)\circ \vec c|\]
Abbildung 3: Unterteilung Spat in dreieckiges Prisma
Das Volumen einer Pyramide lässt sich mit dem Spatprodukt berechnen. Es gilt\[V_{Pyramide} = \frac{1}{3}V_{Prisma}\]
Damit gelten folgende Formeln:
Vierseitige Pyramide:
\[V_{Pyramide}=\frac{1}{3}\cdot|(\vec a \times \vec b)\circ \vec c|\]
Dreiseitige Pyramide:
\[V_{Pyramide}=\frac{1}{6}\cdot|(\vec a \times \vec b)\circ \vec c|\]
Mit dem Spatprodukt kannst Du auch das Volumen einer Pyramide berechnen. Wenn Du ein Prisma in drei gleiche Teile teilst, bekommst Du drei volumengleiche Pyramiden.
Abbildung 4: Unterteilung dreieckiges Prisma in Pyramiden
Entsprechend ist die Formel für das Volumen einer Pyramide ein Drittel des Volumens des zugrundeliegenden Prismas. Damit berechnet sich das Volumen einer dreiseitigen Pyramide als:\begin{align} V_{Pyramide}&=\frac{1}{3}\cdot V_{Prisma} \\&= \frac{1}{3}\cdot \frac{1}{2}|(\vec a \times \vec b)\circ \vec c|\\&=\frac{1}{6}|(\vec a \times \vec b)\circ \vec c|\end{align}
Für die vierseitige Pyramide folgt analog:
\begin{align} V_{Pyramide}&=\frac{1}{3}\cdot V_{Spat} \\&= \frac{1}{3}\cdot|(\vec a \times \vec b)\circ \vec c|\end{align}
Ist das Spatprodukt 0, dann schließen die drei Vektoren \(\vec a\), \(\vec b\), \(\vec c\) kein gemeinsames Volumen ein. Das ist nur dann der Fall, wenn die drei Vektoren in einer Ebene liegen. Daraus folgt, dass die drei Vektoren linear abhängig sein müssen.
Drei Vektoren \(\vec a\), \(\vec b\), \(\vec c\) sind genau dann linear abhängig, wenn ihr Spatprodukt \[V_{Spat} = (\vec a \times \vec b) \circ \vec c\] null ist. Andersherum sind die Vektoren linear unabhängig, wenn \(V_{Spat}\neq 0\) gilt.
Damit bietet das Spatprodukt eine Alternative, um drei Vektoren auf lineare Unabhängigkeit zu prüfen.
In diesem Abschnitt kannst Du das Anwenden der Formeln ein wenig selbst üben.
Aufgabe
Gegeben seien die Vektoren \(\vec a = \begin{pmatrix}8\\5\\4\end{pmatrix}\), \(\vec b = \begin{pmatrix}2\\6\\4\end{pmatrix}\) und \(\vec a = \begin{pmatrix}4\\5\\0\end{pmatrix}\)
Berechne das Volumen des durch die drei Vektoren aufgespannten Spats mit dem Spatprodukt.
Lösung
1. Schritt:
Setzte als Erstes die gegebene Vektoren in die Formel des Spatproduktes ein:
\[V=\left(\begin{pmatrix}8\\5\\4\end{pmatrix}\times \begin{pmatrix}2\\6\\4\end{pmatrix}\right)\circ \begin{pmatrix}4\\5\\0\end{pmatrix}\]
2. Schritt:
Nachdem Du die Werte eingesetzt hast, berechnest Du als Erstes das Kreuzprodukt:
\[\begin{pmatrix}8\\5\\4\end{pmatrix}\times \begin{pmatrix}2\\6\\4\end{pmatrix}= \begin{pmatrix}5\cdot 4-4\cdot 6\\4\cdot 2-8\cdot 4\\8\cdot 6-5\cdot 2\end{pmatrix}= \begin{pmatrix}-4\\-24\\38\end{pmatrix}\]
3. Schritt:
Als Letztes musst Du jetzt nur noch das Skalarprodukt berechnen:
\begin{align}V&= \left|\begin{pmatrix}-4\\-24\\38\end{pmatrix}\circ \begin{pmatrix}4\\5\\0\end{pmatrix}\right|\\&=|-4\cdot 4 + (-24)\cdot 5+38\cdot 0|\\&=|-136|\\&=136\end{align}
Das Volumen beträgt 136 VE.
Das Spatprodukt sagt aus, dass Du das Volumen eines Spats mit den drei aufspannenden Vektoren berechnen kannst.
Wenn das Spatprodukt 0 ist, dann bedeutet das, dass die durch zwei Vektoren aufgespannte Ebene keinen Winkel mit dem dritten Vektor einschließt. Es sind demnach alle Vektoren in einer Ebene und linear abhängig.
Ein Spat ist ein geometrischer Körper, der sechs Parallelogramme als Seitenflächen besitzt. Die gegenüberliegende Parallelogramme sind immer kongruent zueinander und liegen in parallelen Ebenen.
Das Spatprodukt kannst Du auf zwei Arten berechnen. Entweder Du bildest erst von zwei der gegebenen Vektoren das Kreuzprodukt und multiplizierst dann das Ergebnis mit dem dritten Vektor skalar, oder Du setzt die drei Vektoren in eine 3 × 3 Matrix und berechnest davon die Determinante.
Karteikarten in Spatprodukt6
Lerne jetztWas ist ein Spat?
Ein Spat ist ein geometrischer Körper, der sechs Parallelogramme als Seitenflächen besitzt. Die gegenüberliegende Parallelogramme sind immer kongruent zueinander und liegen in parallelen Ebenen.
Was bedeutet es für die Vektoren des Spats, wenn das Ergebnis für das Spatprodukt 0 ist?
Wenn, das Spatprodukt 0 ist, dann bedeutet das, dass der die durch zwei Vektoren aufgespannte Ebene keinen Winkel mit dem dritten Vektor einschließt. Es sind demnach alle Vektoren in einer Ebene und linear abhängig.
Wie kann das Spatprodukt berechnet werden?
Das Spatprodukt kannst Du auf zwei Arten berechnen. Entweder Du bildest erst von zwei der gegebenen Vektoren das Kreuzprodukt und multiplizierst dann das Ergebnis mit dem dritten Vektor skalar, oder Du setzt die drei Vektoren in eine 3 × 3 Matrix und berechnest davon die Determinante.
In welchem Verhältnis liegen die gegenüberliegenden Seitenflächen eines Spats zueinander?
Die gegenüberliegenden Seitenflächen eines Spats sind parallel zueinander
Können drei Vektoren, die in der gleichen Ebene liegen, ein Volumen aufspannen?
Nein, drei Vektoren die in der gleichen Ebene liegen können kein Volumen aufspannen. Da sie alle in der gleichen Ebene liegen, können sie nur zweidimensionale Objekte wie einen Flächeninhalt bilden.
Welcher Satz wird bei der Berechnung von Determinanten verwendet?
Bei der Berechnung von Determinanten wird der Satz von Sarrus verwendet.
Du hast bereits ein Konto? Anmelden
Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.
Melde dich an für Notizen & Bearbeitung. 100% for free.
Speichere Erklärungen in deinem persönlichen Bereich und greife jederzeit und überall auf sie zu!
Mit E-Mail registrieren Mit Apple registrierenDurch deine Registrierung stimmst du den AGBs und der Datenschutzerklärung von StudySmarter zu.
Du hast schon einen Account? Anmelden