StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
Americas
Europe
Du kannst mit einem Dreieck einige Konstruktionen durchführen. Eine davon ist es, den Umkreis um ein Dreieck zu konstruieren. Hast Du ein Dreieck ABC gegeben, kannst Du einen Kreis bilden, welcher durch alle Eckpunkte des Dreiecks ABC verläuft.Der Umkreis eines Dreiecks ABC ist der Kreis, welcher durch alle drei Eckpunkte verläuft. Sein Mittelpunkt M ist der Schnittpunkt der drei Mittelsenkrechten ma, mb…
Entdecke über 200 Millionen kostenlose Materialien in unserer App
Speicher die Erklärung jetzt ab und lies sie, wenn Du Zeit hast.
SpeichernLerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenDu kannst mit einem Dreieck einige Konstruktionen durchführen. Eine davon ist es, den Umkreis um ein Dreieck zu konstruieren.
Hast Du ein Dreieck ABC gegeben, kannst Du einen Kreis bilden, welcher durch alle Eckpunkte des Dreiecks ABC verläuft.
Der Umkreis eines Dreiecks ABC ist der Kreis, welcher durch alle drei Eckpunkte verläuft.
Sein Mittelpunkt M ist der Schnittpunkt der drei Mittelsenkrechten ma, mb und mc der Dreiecksseiten a, b und c.
Hier findest Du den Umkreis eines Dreiecks in einem Beispiel:
Der Kreis u ist der Umkreis des Dreiecks ABC.
Abbildung 1: Umkreis u des Dreiecks ABC
Den Mittelpunkt M des Umkreises u findest Du, indem Du den Schnittpunkt M der Mittelsenkrechten ermittelst. Er ist von allen drei Eckpunkten gleich weit entfernt. Es gilt also Folgendes:
Abbildung 2: Umkreismittelpunkt M und seine Abstände zu den Eckpunkten A, B und C
Wie oben bereits gesehen, lässt sich der Radius r des Umkreises u einfach messen, indem Du den Abstand zwischen seinem Mittelpunkt und einem seiner Eckpunkte misst. Es gibt aber auch eine Formel, mit welcher Du den Radius des Umkreises berechnen kannst, ohne diesen vorher eingezeichnet zu haben.
Den Radius r des Umkreises u eines Dreiecks ABC kannst Du mit folgender Formel berechnen:
In der obigen Formel sind a, b, und c die Seitenlängen der drei Seiten und der Flächeninhalt des Dreiecks ABC.
Wenn Du also den Radius des Umkreises u eines Dreiecks ABC berechnen möchtest, teilst Du das Produkt der Seitenlängen durch das Vierfache des Flächeninhaltes des Dreiecks ABC.
Wenn Du den Umkreis eines Dreiecks konstruieren möchtest, solltest Du wissen, wie man Mittelsenkrechten konstruiert.
Falls Du Dir mit diesem Verfahren noch unsicher bist, schau gerne im Artikel Mittelsenkrechte konstruieren vorbei.
Die Mittelsenkrechte eines Dreiecks konstruierst Du, indem Du um alle drei Eckpunkte Kreise zeichnest. Der Radius der Kreise sollte so gewählt werden, dass die Kreise zwei Schnittpunkte haben. Durch diese zwei Schnittpunkte je zweier Kreise zeichnest Du eine Gerade. So entstehen die drei Mittelsenkrechten des Dreiecks.
Um den Umkreis eines Dreiecks ABC zu konstruieren, gehst Du in folgenden Schritten vor:
Es genügt auch, wenn du nur zwei der drei Mittelsenkrechten einzeichnest und entsprechend deren Schnittpunkt ausmachst. Der Vollständigkeit halber zeigen wir es dir in unseren Beispielen mit allen drei Mittelsenkrechten.
Aufgabe
Konstruiere für das Dreieck ABC den Umkreis u.
Abbildung 3: Dreieck ABC
Lösung
1. Schritt: Die Mittelsenkrechten konstruieren | 2. Schritt: Der Schnittpunkt der Mittelsenkrechten |
Zunächst konstruierst du mithilfe deines Zirkels die Mittelsenkrechten ma, mb und mc aller drei Seiten.
| Die drei Mittelsenkrechten ma, mb und mc sollten sich alle in einem Punkt M schneiden. Sollte das nicht der Fall sein, kontrolliere noch einmal, ob du alle Mittelsenkrechten richtig konstruiert hast.
|
Du kannst anschließend den Umkreis u konstruieren. Der Mittelpunkt des Umkreises u ist der Schnittpunkt M der Mittelsenkrechten und der Radius ist der Abstand zwischen dem Schnittpunkt M und einem der drei Eckpunkte.
Um den Umkreis u also zu konstruieren, stichst du den Zirkel im Mittelpunkt M ein und stellst ihn auf den Abstand zwischen Mittelpunkt M und einer der drei Ecken ein. Anschließend kannst du den Umkreis u zeichnen.
Abbildung 6: Umkreis u des Dreiecks ABC
Oben konntest Du jetzt schon sehen, wie es Schritt für Schritt aussieht, wenn der Umkreis eines Dreiecks konstruiert wird. Diese Konstruktionsschritte findest Du hier noch mal zusammengefasst:
Abbildung 7: Konstruktion der zwei Mittelsenkrechten und Abbildung 8: Mittelsenkrechten
Abbildung 9: Umkreis u
Bei den verschiedenartigen Dreiecken sehen auch ihre Umkreise unterschiedlich aus. Im Folgenden lernst Du einige besondere Fälle kennen.
Bei rechtwinkligen Dreiecken gibt es eine Besonderheit bezüglich des Mittelpunktes M. Dieser bildet in diesem Fall nämlich nicht nur den Mittelpunkt des Umkreises u, sondern ist gleichzeitig Mittelpunkt der Hypotenuse.
Abbildung 10: Rechtwinkliges Dreieck ABC und sein Umkreis U
In diesem beispielhaften Dreieck ABC bildet die Seite a die Hypotenuse. Es ist zu erkennen, dass der Schnittpunkt M die Hypotenuse halbiert, da die Mittelsenkrechte m durch diesen Punkt verläuft. Gleichzeitig ist M Mittelpunkt des Kreises u.
Liegt Dir ein stumpfwinkliges Dreieck ABC vor, befindet sich der Mittelpunkt M des Umkreises immer außerhalb des Dreiecks ABC.
Stumpfwinklig ist ein Dreieck, wenn es einen Winkel α besitzt, für welchen gilt 90° < α < 180°.
Abbildung 11: Stumpfwinkliges Dreieck ABC und sein Umkreis U
Ist das Dreieck ABC, zu welchem Du denn Umkreis u konstruieren sollst, ein spitzwinkliges Dreieck, kannst Du mit Sicherheit sagen, dass der Mittelpunkt M des Umkreises u innerhalb des Dreiecks ABC liegt.
Spitzwinklig ist ein Dreieck, wenn für alle Winkel α, β und γ gilt 0° < α, β, γ < 90°.
Abbildung 12: Spitzwinkliges Dreieck ABC und sein Umkreis u
Wenn Du nicht nur wissen möchtest, wie man den Umkreis eines Dreiecks konstruiert, sondern auch welche Eigenschaften dieser hat, schau gerne in unserem Artikel "Umkreis eines Dreiecks" vorbei!
Aufgabe 1
Konstruiere den Umkreis u des rechtwinkligen Dreiecks ABC.
Abbildung 13: Rechtwinkliges Dreieck ABC
Lösung
Den Umkreis u des obigen Dreiecks ABC konstruierst Du, indem Du die Mittelsenkrechten der drei Seiten einzeichnest und deren Schnittpunkt M und somit den Mittelpunkt des Umkreises ausmachst. Anschließend kannst Du den Umkreis u mit Radius zeichnen.
Abbildung 14: Rechtwinkliges Dreieck ABC und sein Umkreis u
Aufgabe 2
Konstruiere den Umkreis des Dreiecks ABC und bestimme anhand des Umkreises u, ob es sich um ein stumpfwinkliges oder spitzwinkliges Dreieck handelt.
Abbildung 15: Dreieck ABC
Lösung
Den Umkreis u des obigen Dreiecks ABC konstruierst Du, indem Du die Mittelsenkrechten der drei Seiten einzeichnest und deren Schnittpunkt M und somit den Mittelpunkt des Umkreises ausmachst. Anschließend kannst Du den Umkreis u mit Radius zeichnen.
Abbildung 16: Dreieck ABC mit seinem Umkreis u
Der Mittelpunkt des Umkreises u liegt innerhalb des Dreiecks ABC, was darauf schließen lässt, dass es sich um ein spitzwinkliges Dreieck handelt.
Der Umkreismittelpunkt liegt bei spitzwinkligen Dreiecken im Dreieck.
Die Mittelsenkrechte eines Dreiecks konstruierst du, indem du um die Eckpunkte Kreise mit gleichem Radius zeichnest. Der Radius sollte so gewählt werden, dass die Kreise sich schneiden. Durch die beiden Schnittpunkte zweier Kreise zeichnest du jeweils eine Gerade. Diese drei Geraden sind die Mittelsenkrechten des Dreiecks.
Der Umkreismittelpunkt im rechtwinkligen Dreieck liegt in der Mitte der Hypotenuse.
Der Umkreis eines Kreises ist der Kreis, welcher außerhalb des Dreiecks und dabei durch alle drei Eckpunkte verläuft.
der Nutzer schaffen das Umkreis Dreieck konstruieren Quiz nicht! Kannst du es schaffen?
Quiz startenWie möchtest du den Inhalt lernen?
Wie möchtest du den Inhalt lernen?
Kostenloser mathe Spickzettel
Alles was du zu . wissen musst. Perfekt zusammengefasst, sodass du es dir leicht merken kannst!
Sei rechtzeitig vorbereitet für deine Prüfungen.
Teste dein Wissen mit spielerischen Quizzes.
Erstelle und finde Karteikarten in Rekordzeit.
Erstelle die schönsten Notizen schneller als je zuvor.
Hab all deine Lermaterialien an einem Ort.
Lade unzählige Dokumente hoch und habe sie immer dabei.
Kenne deine Schwächen und Stärken.
Ziele Setze dir individuelle Ziele und sammle Punkte.
Nie wieder prokrastinieren mit unseren Lernerinnerungen.
Sammle Punkte und erreiche neue Levels beim Lernen.
Lass dir Karteikarten automatisch erstellen.
Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.
Melde dich an für Notizen & Bearbeitung. 100% for free.
Speichere Erklärungen in deinem persönlichen Bereich und greife jederzeit und überall auf sie zu!
Mit E-Mail registrieren Mit Apple registrierenDurch deine Registrierung stimmst du den AGBs und der Datenschutzerklärung von StudySmarter zu.
Du hast schon einen Account? Anmelden