Select your language

Suggested languages for you:
Log In Anmelden
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Die All-in-one Lernapp:

  • Karteikarten
  • NotizenNotes
  • ErklärungenExplanations
  • Lernpläne
  • Übungen
App nutzen

Winkel messen

Save Speichern
Print Drucken
Edit Bearbeiten
Melde dich an und nutze alle Funktionen. Jetzt anmelden
Winkel messen

Winkel messen Kuchenbeispiel Winkel messen üben StudySmarter

Winkel begegnen uns allen in vielen alltäglichen Dingen. Schau Dir beispielsweise dieses Tortenstück an. Das Tortenstück hat selbst einen bestimmten Winkel. Mithilfe von Winkeln kannst Du diese Torte auch zum Beispiel in gleich große Stücke unterteilen. Dafür musst Du Winkel messen! Wie das funktioniert und was Du dazu benötigst, erfährst Du in dieser Erklärung.

Winkel messen und zeichnen

Winkel kannst Du mithilfe von einem Geodreieck messen und auch zeichnen. Das Geodreieck kennst Du vielleicht schon aus dem Thema Geometrie. Damit kannst Du viele geometrische Figuren konstruieren. Für Abmessungen gibt es auf einem herkömmlichen Geodreieck zwei Skalen, um Winkel zu messen.

Das Geodreieck

Das Geodreieck hat verschiedene Beschriftungen und Elemente, die Du kennen solltest, um damit korrekt zu arbeiten. Wenn Du nicht sicher im Umgang mit einem Geodreieck bist, ist das kein Problem! Schau Dir dazu gerne die Abbildung zum Geodreieck genau an.

Winkel messen Geodreieck Beschriftung Winkel messen Geodreieck StudySmarter

Abbildung 1: beschriftetes Geodreieck

Die Hilfslinien sind immer hilfreich, weil Du damit einen und - Winkel direkt erkennen kannst. Die innere und äußere Winkelskala benutzt Du, abhängig von der Richtung des Winkels.

Um Winkel und ihre Eigenschaften besser zu verstehen, ist es sinnvoll, sich zuerst eine Wiederholung zu allen Arten von Winkeln anzuschauen!

Wiederholung – Arten von Winkeln

Es gibt verschiedene Arten von Winkeln. Die ausführliche Erklärung zu allen Arten findest Du in der Erklärung "Winkelarten". Unter die Winkelarten fällt der Nullwinkel, der spitze Winkel, der rechte Winkel, der stumpfe Winkel, der gestreckte Winkel, der überstumpfe Winkel und der Vollwinkel.

  1. Nullwinkel: Der Nullwinkel hat eine Winkelgröße von 0°.
  2. Spitzer Winkel: Der spitze Winkel hat eine Winkelgröße zwischen 0° und 90°.
  3. Rechter Winkel: Der rechte Winkel hat eine genaue Winkelgröße von 90°.
  4. Stumpfer Winkel: Der stumpfe Winkel hat eine Winkelgröße zwischen 90° und 180°.
  5. Gestreckter Winkel: Der gestreckte Winkel hat eine Winkelgröße von 180°.
  6. Überstumpfer Winkel: Der überstumpfe Winkel hat eine Winkelgröße zwischen 180° und 360°.
  7. Vollwinkel: Der Vollwinkel hat eine Winkelgröße von 360°.

Um mit dem Geodreieck einen Winkel zu zeichnen, benötigst Du einen Scheitelpunkt, an dem Du den Nullpunkt des Geodreiecks anlegen kannst.

Winkel zeichnen mit dem Geodreieck

Wenn Du an eine Gerade oder eine Strecke einen bestimmten Winkel konstruieren sollst, kannst Du dazu das Geodreieck benutzen. Lege dazu das Geodreieck an den Scheitelpunkt S an, an dem der Winkel konstruiert werden soll.

Winkel messen Scheitelpunkt Winkel messen Geodreieck StudySmarter

So kannst Du jetzt an den Scheitelpunkt S einen Winkel anzeichnen, der eine Größe zwischen und hat. Dafür benutzt Du dann die äußere Winkelskala, da ein solcher Winkel dann gegen den Uhrzeigersinn geht, so wie auch die Reihenfolge der Zahlen auf der äußeren Winkelskala.

Hier kannst Du Dir ein paar Abbildungen zu konstruierten Winkeln an dem Scheitelpunkt S anschauen.

Winkel messen 45° Winkel Winkel messen Geodreieck StudySmarterAbbildung 3: 45° Winkel

Winkel messen 20° Winkel Winkel messen Geodreieck StudySmarter

Abbildung 4: 20° Winkel

Winkel messen 150° Winkel Winkel messen Geodreieck StudySmarterAbbildung 5: 150° Winkel

Wie Du Winkel mithilfe eines Geodreiecks anzeichnest, hast Du ja jetzt gesehen. Aber wie sieht das jetzt aus, wenn Du einen schon vorhandenen Winkel zwischen zwei Geraden oder Strecken messen sollst?

Winkel messen mit dem Geodreieck

Um einen Winkel zu messen, legst Du das Geodreieck, wie bei dem Zeichnen eines Winkels, an den Scheitelpunkt S an, an dem sich die beiden Geraden oder Strecken schneiden.

Wichtig dabei ist, zu wissen, wann ein Winkel im Uhrzeigersinn oder gegen den Uhrzeigersinn verläuft. Denn beim Messen von Winkeln mit dem Geodreieck ist es dann von der Richtung des Winkels abhängig, welche Winkelskala Du benutzt.

Winkel messen Richtung Winkel messen Geodreieck StudySmarterAbbildung 6: Winkel gegen den Uhrzeigersinn

Die äußere Winkelskala wird benutzt, wenn der Winkel gegen den Uhrzeigersinn verläuft.

Winkel messen Richtung Winkel messen Geodreieck StudySmarterAbbildung 7: Winkel im Uhrzeigersinn

Die innere Winkelskala wird benutzt, wenn der Winkel im Uhrzeigersinn verläuft.

Schau Dir zum Winkel messen gerne die folgenden Abbildungen an!

Winkel messen zwei Strecken Winkel messen Geodreieck StudySmarterAbbildung 8: zwei Strecken

Wie Du siehst, ist der Winkel, der von den zwei Strecken eingeschlossen wird, ein spitzer Winkel. Die Größe dieses Winkels kannst Du also messen, indem Du das Geodreieck an den Scheitelpunkt S anlegst.

Winkel messen zwei Strecken Winkel messen Geodreieck StudySmarterAbbildung 9: Winkel messen

Weil der Winkel gegen den Uhrzeigersinn geht, kannst Du an der äußeren Winkelskala die Größe des eingeschlossenen Winkels ablesen.

Und? Wie groß ist der Winkel?

Wie Du siehst, geht die Strecke an dem zweiten türkisen Punkt durch die Skala, und zwar bei genau . Diesen Winkel kannst Du dann einzeichnen.

Winkel messen 55° Winkel Winkel messen Geodreieck StudySmarterAbbildung 10: Wert für Winkel ɑ

Der Winkel .

Du hast nun die Abmessung eines spitzen Winkels mithilfe eines Geodreiecks gesehen. Wenn Du Dich fragst, wie das Messen von anderen spezifischeren Winkeln funktioniert, dann findest Du die Antwort im nächsten Abschnitt!

Besondere Winkel messen

Winkel messen überstumpfer Winkel StudySmarter

In diesem Abschnitt findest Du heraus, wie Du rechte Winkel (- Winkel) und überstumpfe Winkel messen kannst!

90 Grad Winkel messen – Rechter Winkel

Rechte Winkel haben immer eine Winkelgröße von genau . Wie Du in der Vertiefung zum Geodreieck gesehen hast, hat das Geodreieck eine Hilfslinie für rechte Winkel.

Winkel messen rechten Winkel messen StudySmarterAbbildung 11: rechten Winkel messen

Wie Du siehst, stehen die zwei Strecken senkrecht aufeinander. Die Strecke geht durch die - Hilfslinie beim Geodreieck. Damit hast Du hier einen rechten Winkel vorliegen und kannst ihn dann einzeichnen.

Einen rechten Winkel zeichnest Du für gewöhnlich mit einem Punkt in dem Viertelkreis ein.

Winkel messen rechten Winkel messen StudySmarterAbbildung 12: rechter Winkel

Ähnlich ist das auch mit einem Winkel. Auch für die Winkelgröße gibt es Hilfslinien auf dem Geodreieck.

Überstumpfer Winkel messen

Ein überstumpfer Winkel hat eine Winkelgröße von bis . Das heißt einen solchen Winkel kannst Du nicht einfach direkt mit dem Geodreieck messen, da das Geodreieck nur Winkel bis zu einer Winkelgröße von abmessen kann. Um dieses Problem zu lösen, gibt es zwei Herangehensweisen.

Gegenwinkel abmessen

Die wohl einfachere Herangehensweise ist es, den Gegenwinkel zu messen. Die gemessene Winkelgröße kannst Du dann von (Größe eines Vollwinkels) abziehen, um die Größe des gesuchten Winkels zu berechnen.

Aufgabe 1

Ermittle die Größe des Winkels ɑ.

Winkel messen überstumpfer Winkel messen StudySmarterAbbildung 13: überstumpfer Winkel

Lösung

Um den Winkel ɑ zu bestimmen, misst Du den Gegenwinkel β mit dem Geodreieck ab.

Winkel messen überstumpfer Winkel messen StudySmarterAbbildung 14: überstumpfen Winkel messen

Der Gegenwinkel . Weil der Vollwinkel entspricht, kannst Du jetzt die von den subtrahieren, um die Größe des Winkels ɑ zu berechnen.

Der Winkel .

Weitere Strecke anzeichnen

Eine andere Möglichkeit, einen überstumpfen Winkel zu berechnen, ist eine Strecke anzuzeichnen und nur den restlichen Teil des Winkels abzumessen. Du zeichnest die Strecke so an, dass ein gestreckter Winkel () entsteht. Den gestreckten Winkel addierst Du dann zu dem abgemessenen restlichen Winkel.

Aufgabe 2

Ermittle die Größe des Winkels ɑ.

Winkel messen überstumpfer Winkel messen StudySmarterAbbildung 15: überstumpfer Winkel

Lösung

Zeichne eine Strecke an, um einen gestreckten Winkel zu erzeugen:

Winkel messen überstumpfer Winkel messen StudySmarterAbbildung 16: angezeichnete Strecke

Wie Du siehst, ist der Winkel jetzt in zwei Teile unterteilt. Um die Größe des gesamten Winkels zu ermitteln, misst Du jetzt nur den gelben Teil des Winkels.

Winkel messen überstumpfer Winkel messen StudySmarterAbbildung 17: Restwinkel messen

Der Winkel geht gegen den Uhrzeigersinn auf, also benutzt Du die äußere Winkelskala, um diesen Winkel abzumessen. Wie Du siehst, geht die Strecke durch die auf der äußeren Winkelskala. Um jetzt die gesamte Winkelgröße zu berechnen, addierst Du beide Winkelwerte:

Der Winkel .

Achte immer darauf, in welcher Richtung der Winkel verläuft, um das richtige Ergebnis zu bekommen! Je öfter Du das Winkel messen übst, desto schneller wirst Du auch erkennen, welche Winkelskala Du benutzen musst.

Winkel messen üben

Schau Dir gerne die folgenden Übungsaufgaben an, um Dein Können im Winkel messen zu überprüfen!

Aufgabe 3

Miss den Winkel ɑ, den das Tortenstück einschließt.

Winkel messen Kuchenbeispiel Winkel messen üben StudySmarterAbbildung 18: Kuchenstück Winkel

Lösung

Schaue zuerst, in welche Richtung der Winkel aufgeht. In diesem Fall verläuft er im Uhrzeigersinn, das bedeutet Du benutzt die innere Winkelskala, um den Winkel ɑ zu messen.

Winkel messen Winkel messen Geodreieck StudySmarterAbbildung 19: Winkel messen

Der Winkel, der von dem Tortenstück eingeschlossen wird, entspricht .

Aufgabe 4

Miss den Winkel ɑ, der von den zwei Uhrzeigern eingeschlossen wird.

Winkel messen Winkel messen üben StudySmarterAbbildung 20: Uhr mit Zeigern

Lösung

Hier kannst Du an beiden Strecken das Geodreieck anlegen. Je nachdem, an welcher Strecke Du das Geodreieck anlegst, benutzt Du die innere oder äußere Winkelskala. In diesem Beispiel wird das Geodreieck am Minutenzeiger (dem längeren Zeiger) angelegt.

Winkel messen Winkel messen üben StudySmarterAbbildung 21: Winkel zwischen Zeigern messen

Wie Du siehst, ist der Stundenzeiger recht kurz und der Winkel kann nicht direkt an der äußeren Winkelskala abgelesen werden. Dafür kannst Du den Zeiger mit einer weiteren Strecke verlängern, sodass Du den Winkel ablesen kannst.

Winkel messen Winkel messen üben StudySmarterAbbildung 22: gemessener Winkel ɑ

Der Winkel hat eine Größe von .

Viele geometrische Formen schließen Winkel ein, die Du messen kannst. Zum Üben kannst Du Dir das Dreieck und seine Winkel anschauen!

Dreiecke – Winkel messen

Ein Dreieck hat drei Innenwinkel. Die Innenwinkelsumme eines Dreiecks beträgt immer genau . Wenn Du einen Winkel in einem Dreieck messen sollst, dann gehst Du genauso vor, wie Du es in dieser Erklärung gelernt hast!

Aufgabe 5

Miss alle drei Winkel des Dreiecks mit dem Geodreieck ab.

Winkel messen Dreiecke Winkel messen StudySmarterAbbildung 23: Dreieck

Lösung

Winkel messen Dreiecke Winkel messen StudySmarterAbbildung 24: Winkel ɑ messen

Der Winkel .

Winkel messen Dreiecke Winkel messen StudySmarterAbbbildung 25: Winkel β messen

Der Winkel .

Winkel messen Dreiecke Winkel messen StudySmarterAbbildung 26: Winkel γ messen

Der Winkel .

Um das zu überprüfen, kannst Du alle Winkelwerte miteinander addieren und checken, ob es auf die Innenwinkelsumme kommt.

Die gemessenen Winkelwerte ergeben .

Mehr Übungsaufgaben kannst Du Dir noch im finalen Quiz anschauen!

Winkel messen – Das Wichtigste

  • Es gibt 7 Winkelarten
  • Winkel werden mit einem Geodreieck gemessen
  • Ein herkömmliches Geodreieck hat Hilfslinien für und Winkel
  • Das Geodreieck hat zwei Winkelskalen
  • Läuft der Winkel gegen den Uhrzeigersinn, wird die äußere Winkelskala benutzt
  • Läuft der Winkel im Uhrzeigersinn, wird die innere Winkelskala benutzt
  • Bei einem überstumpfen Winkel kann entweder der Gegenwinkel abgemessen oder eine Strecke angezeichnet werden

Nachweise

  1. Becker et al. (2015). Duden Formeln und Werte. Cornelsen Verlag.
  2. Hausleiter (2015). Mathematik - Aktuelles Grundwissen. Circon Verlag.

Häufig gestellte Fragen zum Thema Winkel messen

Ein 90 Grad Winkel entsteht, wenn zwei Geraden oder Strecken senkrecht aufeinander stehen. Er wird üblicherweise mit einem Viertelkreis mit Punkt in der Mitte dargestellt. 

Das Geodreieck wird am Nullpunkt an den Scheitelpunkt des zu messenden Winkels angelegt. Mithilfe einer der zwei Winkelskalas auf dem Geodreieck kann dann der Winkel gemessen werden.

Auf einem herkömmlichen Geodreieck gibt es eine Hilfslinie für das Messen eines rechten Winkels. 

Finales Winkel messen Quiz

Frage

Welche Beschriftungen hat ein herkömmliches Geodreieck?

Antwort anzeigen

Antwort

Nullpunkt, innere und äußere Winkelskala, 45° und 90° Hilfslinie.

Frage anzeigen

Frage

Wie viele Winkelskalas hat ein Geodreieck?

Antwort anzeigen

Antwort

2, die Innere und die Äußere.

Frage anzeigen

Frage

Wann wird die innere Winkelskala zum Winkel messen benutzt?

Antwort anzeigen

Antwort

Wenn der Winkel im Uhrzeigersinn verläuft.

Frage anzeigen

Frage

Wann wird die äußere Winkelskala zum Winkel messen benutzt?

Antwort anzeigen

Antwort

Wenn der Winkel gegen den Uhrzeigersinn veläuft.

Frage anzeigen

Frage

Wie viele Methoden gibt es, einen überstumpfen Winkel mit dem Geodreieck zu messen?

Antwort anzeigen

Antwort

2.

Frage anzeigen

Frage

Welche Methoden gibt es, einen überstumpfen Winkel mit dem Geodreieck zu messen?

Antwort anzeigen

Antwort

  1. Gegenwinkel messen und den Wert des Gegenwinkels vom Vollwinkel abziehen.
  2. Strecke anzeichnen, sodass ein gestreckter Winkel entsteht, den Restwinkel messen und mit dem gestreckten Winkel addieren.
Frage anzeigen

Frage

Wo wird der Nullpunkt des Geodreiecks angesetzt, um einen Winkel zu messen?

Antwort anzeigen

Antwort

Am Scheitelpunkt.

Frage anzeigen
Mehr zum Thema Winkel messen
60%

der Nutzer schaffen das Winkel messen Quiz nicht! Kannst du es schaffen?

Quiz starten

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Gerade angemeldet?

Ja
Nein, aber ich werde es gleich tun

Melde dich an für Notizen & Bearbeitung. 100% for free.