StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
Americas
Europe
Winkel begegnen uns allen in vielen alltäglichen Dingen. Schau Dir beispielsweise dieses Tortenstück an. Das Tortenstück hat selbst einen bestimmten Winkel. Mithilfe von Winkeln kannst Du diese Torte auch zum Beispiel in gleich große Stücke unterteilen. Dafür musst Du Winkel messen! Wie das funktioniert und was Du dazu benötigst, erfährst Du in dieser Erklärung.Winkel kannst Du mithilfe von einem Geodreieck…
Entdecke über 200 Millionen kostenlose Materialien in unserer App
Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenWinkel begegnen uns allen in vielen alltäglichen Dingen. Schau Dir beispielsweise dieses Tortenstück an. Das Tortenstück hat selbst einen bestimmten Winkel. Mithilfe von Winkeln kannst Du diese Torte auch zum Beispiel in gleich große Stücke unterteilen. Dafür musst Du Winkel messen! Wie das funktioniert und was Du dazu benötigst, erfährst Du in dieser Erklärung.
Winkel kannst Du mithilfe von einem Geodreieck messen und auch zeichnen. Das Geodreieck kennst Du vielleicht schon aus dem Thema Geometrie. Damit kannst Du viele geometrische Figuren konstruieren. Für Abmessungen gibt es auf einem herkömmlichen Geodreieck zwei Skalen, um Winkel zu messen.
Das Geodreieck
Das Geodreieck hat verschiedene Beschriftungen und Elemente, die Du kennen solltest, um damit korrekt zu arbeiten. Wenn Du nicht sicher im Umgang mit einem Geodreieck bist, ist das kein Problem! Schau Dir dazu gerne die Abbildung zum Geodreieck genau an.
Abbildung 1: Beschriftetes Geodreieck
Die Hilfslinien sind immer hilfreich, weil Du damit einen und - Winkel direkt erkennen kannst. Die innere und äußere Winkelskala benutzt Du, abhängig von der Richtung des Winkels.
Um Winkel und ihre Eigenschaften besser zu verstehen, ist es sinnvoll, sich zuerst eine Wiederholung zu allen Arten von Winkeln anzuschauen!
Es gibt verschiedene Arten von Winkeln. Die ausführliche Erklärung zu allen Arten findest Du in der Erklärung "Winkelarten". Unter die Winkelarten fällt der Nullwinkel, der spitze Winkel, der rechte Winkel, der stumpfe Winkel, der gestreckte Winkel, der überstumpfe Winkel und der Vollwinkel.
Um mit dem Geodreieck einen Winkel zu zeichnen, benötigst Du einen Scheitelpunkt, an dem Du den Nullpunkt des Geodreiecks anlegen kannst.
Wenn Du an eine Gerade oder eine Strecke einen bestimmten Winkel konstruieren sollst, kannst Du dazu das Geodreieck benutzen. Lege dazu das Geodreieck an den Scheitelpunkt S an, an dem der Winkel konstruiert werden soll.
Abbildung 2: Geodreieck an Scheitelpunkt ansetzen
So kannst Du jetzt an den Scheitelpunkt S einen Winkel anzeichnen, der eine Größe zwischen und hat. Dafür benutzt Du dann die äußere Winkelskala, da ein solcher Winkel dann gegen den Uhrzeigersinn geht, so wie auch die Reihenfolge der Zahlen auf der äußeren Winkelskala.
Hier kannst Du Dir ein paar Abbildungen zu konstruierten Winkeln an dem Scheitelpunkt S anschauen.
Wie Du Winkel mithilfe eines Geodreiecks anzeichnest, hast Du ja jetzt gesehen. Aber wie sieht das jetzt aus, wenn Du einen schon vorhandenen Winkel zwischen zwei Geraden oder Strecken messen sollst?
Um einen Winkel zu messen, legst Du das Geodreieck, wie bei dem Zeichnen eines Winkels, an den Scheitelpunkt S an, an dem sich die beiden Geraden oder Strecken schneiden.
Wichtig dabei ist, zu wissen, wann ein Winkel im Uhrzeigersinn oder gegen den Uhrzeigersinn verläuft. Denn beim Messen von Winkeln mit dem Geodreieck ist es dann von der Richtung des Winkels abhängig, welche Winkelskala Du benutzt.
Die äußere Winkelskala wird benutzt, wenn der Winkel gegen den Uhrzeigersinn verläuft.
Die innere Winkelskala wird benutzt, wenn der Winkel im Uhrzeigersinn verläuft.
Schau Dir zum Winkel messen gerne die folgenden Abbildungen an!
Wie Du siehst, ist der Winkel, der von den zwei Strecken eingeschlossen wird, ein spitzer Winkel. Die Größe dieses Winkels kannst Du also messen, indem Du das Geodreieck an den Scheitelpunkt S anlegst.
Weil der Winkel gegen den Uhrzeigersinn geht, kannst Du an der äußeren Winkelskala die Größe des eingeschlossenen Winkels ablesen.
Und? Wie groß ist der Winkel?
Wie Du siehst, geht die Strecke an dem zweiten türkisen Punkt durch die Skala, und zwar bei genau . Diesen Winkel kannst Du dann einzeichnen.
Der Winkel .
Du hast nun die Abmessung eines spitzen Winkels mithilfe eines Geodreiecks gesehen. Wenn Du Dich fragst, wie das Messen von anderen spezifischeren Winkeln funktioniert, dann findest Du die Antwort im nächsten Abschnitt!
In diesem Abschnitt findest Du heraus, wie Du rechte Winkel (- Winkel) und überstumpfe Winkel messen kannst!
Rechte Winkel haben immer eine Winkelgröße von genau . Wie Du in der Vertiefung zum Geodreieck gesehen hast, hat das Geodreieck eine Hilfslinie für rechte Winkel.
Wie Du siehst, stehen die zwei Strecken senkrecht aufeinander. Die Strecke geht durch die - Hilfslinie beim Geodreieck. Damit hast Du hier einen rechten Winkel vorliegen und kannst ihn dann einzeichnen.
Einen rechten Winkel zeichnest Du für gewöhnlich mit einem Punkt in dem Viertelkreis ein.
Ähnlich ist das auch mit einem Winkel. Auch für die Winkelgröße gibt es Hilfslinien auf dem Geodreieck.
Ein überstumpfer Winkel hat eine Winkelgröße von bis . Das heißt einen solchen Winkel kannst Du nicht einfach direkt mit dem Geodreieck messen, da das Geodreieck nur Winkel bis zu einer Winkelgröße von abmessen kann. Um dieses Problem zu lösen, gibt es zwei Herangehensweisen.
Die wohl einfachere Herangehensweise ist es, den Gegenwinkel zu messen. Die gemessene Winkelgröße kannst Du dann von (Größe eines Vollwinkels) abziehen, um die Größe des gesuchten Winkels zu berechnen.
Aufgabe 1
Ermittle die Größe des Winkels ɑ.
Lösung
Um den Winkel ɑ zu bestimmen, misst Du den Gegenwinkel β mit dem Geodreieck ab.
Der Gegenwinkel . Weil der Vollwinkel entspricht, kannst Du jetzt die von den subtrahieren, um die Größe des Winkels ɑ zu berechnen.
Der Winkel .
Eine andere Möglichkeit, einen überstumpfen Winkel zu berechnen, ist eine Strecke anzuzeichnen und nur den restlichen Teil des Winkels abzumessen. Du zeichnest die Strecke so an, dass ein gestreckter Winkel () entsteht. Den gestreckten Winkel addierst Du dann zu dem abgemessenen restlichen Winkel.
Aufgabe 2
Ermittle die Größe des Winkels ɑ.
Lösung
Zeichne eine Strecke an, um einen gestreckten Winkel zu erzeugen:
Wie Du siehst, ist der Winkel jetzt in zwei Teile unterteilt. Um die Größe des gesamten Winkels zu ermitteln, misst Du jetzt nur den gelben Teil des Winkels.
Der Winkel geht gegen den Uhrzeigersinn auf, also benutzt Du die äußere Winkelskala, um diesen Winkel abzumessen. Wie Du siehst, geht die Strecke durch die auf der äußeren Winkelskala. Um jetzt die gesamte Winkelgröße zu berechnen, addierst Du beide Winkelwerte:
Der Winkel .
Achte immer darauf, in welcher Richtung der Winkel verläuft, um das richtige Ergebnis zu bekommen! Je öfter Du das Winkel messen übst, desto schneller wirst Du auch erkennen, welche Winkelskala Du benutzen musst.
Schau Dir gerne die folgenden Übungsaufgaben an, um Dein Können im Winkel messen zu überprüfen!
Aufgabe 3
Miss den Winkel ɑ, den das Tortenstück einschließt.
Lösung
Schaue zuerst, in welche Richtung der Winkel aufgeht. In diesem Fall verläuft er im Uhrzeigersinn, das bedeutet Du benutzt die innere Winkelskala, um den Winkel ɑ zu messen.
Der Winkel, der von dem Tortenstück eingeschlossen wird, entspricht .
Aufgabe 4
Miss den Winkel ɑ, der von den zwei Uhrzeigern eingeschlossen wird.
Lösung
Hier kannst Du an beiden Strecken das Geodreieck anlegen. Je nachdem, an welcher Strecke Du das Geodreieck anlegst, benutzt Du die innere oder äußere Winkelskala. In diesem Beispiel wird das Geodreieck am Minutenzeiger (dem längeren Zeiger) angelegt.
Wie Du siehst, ist der Stundenzeiger recht kurz und der Winkel kann nicht direkt an der äußeren Winkelskala abgelesen werden. Dafür kannst Du den Zeiger mit einer weiteren Strecke verlängern, sodass Du den Winkel ablesen kannst.
Der Winkel hat eine Größe von .
Viele geometrische Formen schließen Winkel ein, die Du messen kannst. Zum Üben kannst Du Dir das Dreieck und seine Winkel anschauen!
Ein Dreieck hat drei Innenwinkel. Die Innenwinkelsumme eines Dreiecks beträgt immer genau . Wenn Du einen Winkel in einem Dreieck messen sollst, dann gehst Du genauso vor, wie Du es in dieser Erklärung gelernt hast!
Aufgabe 5
Miss alle drei Winkel des Dreiecks mit dem Geodreieck ab.
Lösung
Der Winkel .
Der Winkel .
Abbildung 26: Winkel γ messen
Der Winkel .
Um das zu überprüfen, kannst Du alle Winkelwerte miteinander addieren und checken, ob es auf die Innenwinkelsumme kommt.
Die gemessenen Winkelwerte ergeben .
Mehr Übungsaufgaben kannst Du Dir noch im finalen Quiz anschauen!
Ein 90 Grad Winkel entsteht, wenn zwei Geraden oder Strecken senkrecht aufeinander stehen. Er wird üblicherweise mit einem Viertelkreis mit Punkt in der Mitte dargestellt.
Das Geodreieck wird am Nullpunkt an den Scheitelpunkt des zu messenden Winkels angelegt. Mithilfe einer der zwei Winkelskalas auf dem Geodreieck kann dann der Winkel gemessen werden.
Auf einem herkömmlichen Geodreieck gibt es eine Hilfslinie für das Messen eines rechten Winkels.
Wie möchtest du den Inhalt lernen?
94% der StudySmarter Nutzer erzielen bessere Noten.
Jetzt anmelden94% der StudySmarter Nutzer erzielen bessere Noten.
Jetzt anmeldenWie möchtest du den Inhalt lernen?
Kostenloser mathe Spickzettel
Alles was du zu . wissen musst. Perfekt zusammengefasst, sodass du es dir leicht merken kannst!
Sei rechtzeitig vorbereitet für deine Prüfungen.
Teste dein Wissen mit spielerischen Quizzes.
Erstelle und finde Karteikarten in Rekordzeit.
Erstelle die schönsten Notizen schneller als je zuvor.
Hab all deine Lermaterialien an einem Ort.
Lade unzählige Dokumente hoch und habe sie immer dabei.
Kenne deine Schwächen und Stärken.
Ziele Setze dir individuelle Ziele und sammle Punkte.
Nie wieder prokrastinieren mit unseren Lernerinnerungen.
Sammle Punkte und erreiche neue Levels beim Lernen.
Lass dir Karteikarten automatisch erstellen.
Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.
Melde dich an für Notizen & Bearbeitung. 100% for free.