StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
Americas
Europe
Stell Dir vor, Du hast 6 quadratische Bauklötze, die Du exakt aufeinander legst, um einen Turm zu bauen. Der Turm hat ein bestimmtes Volumen. Nun verschiebst Du die Bauklötze, sodass Dein Turm schräg wird. Die Bauklötze haben immer noch dieselbe Größe und somit hat Dein Turm immer noch dasselbe Volumen, auch wenn er jetzt eine andere Form hat.
Entdecke über 50 Millionen kostenlose Lernmaterialien in unserer App.
Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenStell Dir vor, Du hast 6 quadratische Bauklötze, die Du exakt aufeinander legst, um einen Turm zu bauen. Der Turm hat ein bestimmtes Volumen. Nun verschiebst Du die Bauklötze, sodass Dein Turm schräg wird. Die Bauklötze haben immer noch dieselbe Größe und somit hat Dein Turm immer noch dasselbe Volumen, auch wenn er jetzt eine andere Form hat.
Abbildung 1: Prinzip von Cavalieri - Einführendes Beispiel
Dieses Beispiel beruht auf dem Prinzip von Cavalieri. Was dieses Prinzip genau ist und wieso es gilt, lernst Du in dieser Erklärung kennen.
Das Prinzip von Cavalieri ist Teil der Geometrie in der Mathematik. Wie Du in der Einleitung bereits gelernt hast, geht es bei diesem Prinzip um Volumen und Volumenkörper. Deshalb ist es wichtig, dass Du den Volumenbegriff kennst. Im Folgenden werden die Begriffe Volumen und Volumenkörper wiederholt, um das Prinzip von Cavalieri später verstehen zu können.
Zum Verständnis des Begriffs "Volumen" sind zwei Dinge relevant. Was das Volumen ist und wie es berechnet wird.
Das Volumen V gibt an, wie viel Raum ein geometrischer Körper einnimmt. Vereinfacht gesagt ist es der Platzbedarf dieses Körpers. Die Einheit des Volumens V ist Kubikmeter .
Eine andere Bezeichnung von Volumen ist Raum- oder Kubikinhalt.
Du kannst Dir als Beispiel folgendes vorstellen: Du hast ein neues Zimmer und möchtest es nun einrichten. Du hast ein massives, quaderförmiges Holzbett und möchtest nun wissen, wie viel Platz bzw. Raum es in Deinem Zimmer einnimmt. Der Platzbedarf für das Bett in Deinem Zimmer ist Dein Volumen V.
Für dieses Beispiel wäre nun also erforderlich, das Volumen V zu berechnen um Deinen Platzbedarf festzustellen. Die Berechnung des Volumens V unterscheidet sich, je nachdem um welchen Körper es sich handelt. Die Berechnung der Standardkörper wird im Folgenden kurz wiederholt.
Ein Volumenkörper ist in der Geometrie ein dreidimensionales Objekt. Diese sind nicht flach, sondern nehmen einen bestimmten Raum ein und haben somit ein Volumen V. Die gängigen Volumenkörper siehst Du in Abbildung 2.
Abbildung 2: Volumenkörper
Bei der Berechnung von Volumenkörpern spielt neben dem Volumen V an sich auch die Oberflächenberechnung eine Rolle. Viele Körper stehen auf einer Grundfläche G. Die Grundfläche G eines Zylinders oder eines Kegels ist beispielsweise ein Kreis.
In der nachfolgenden Tabelle kannst Du Dir die Berechnungsformeln für das Volumen V der gängigen Volumenkörper nochmal ansehen.
Volumenkörper | Volumen |
Quader | |
Würfel | |
Kegel | |
Zylinder | |
Pyramide | |
Prisma |
Bei dem Prinzip von Cavalieri, auch Satz von Cavalieri genannt, geht es um die Volumengleichheit von Körpern.
Das Prinzip von Cavalieri besagt, dass zwei Körper mit gleicher Höhe volumengleich sind, wenn jede zur Grundebene parallel verlaufende Ebene beide Körper in gleich großen Flächen schneidet.
Es müssen also die folgenden drei Bedingungen erfüllt sein:
Mithilfe des Prinzip von Cavalieri kannst Du also das Volumen zweier beliebiger Körper vergleichen.
Das Prinzip von Cavalieri geht auf den italienischen Astronomen und Mathematiker Bonaventura Cavalieri (1598 – 1647) zurück. Er war ein Schüler von Galileo Galilei. Die Gültigkeit des Prinzips wurde zu Lebzeiten Cavalieris stark angezweifelt. Ein genauer Beweis des Prinzip von Cavalieri war erst mit der Infinitesimalrechnung möglich.
Abbildung 3: Bonaventura Cavalieri
Für einen Beweis der Gültigkeit des Prinzips von Cavalieri kannst Du Dir den Turm aus der Einleitung ansehen.
Du hattest Dir einen Turm aus 6 quadratischen Bauklötzen gebaut und die Bauklötze danach so verschoben, dass der Turm schräg wurde.
Abbildung 4: Prinzip von Cavalieri - Beispiel
Links in Abbildung 4 ist Dein Ausgangsturm und rechts Dein Endturm. Um die beiden Türme nun auf Volumengleichheit zu untersuchen kannst Du prüfen, ob die drei Bedingungen erfüllt sind, die Du gerade gelernt hast:
Prüfung der 1. Bedingung:
Die Grundfläche der Türme ist jeweils die Fläche, auf der die Türme stehen. Da die beiden Türme aus denselben Bauklötzen bestehen, haben sie dieselbe Grundfläche G.
Abbildung 5: Grundebene G des Turmes
Außerdem befinden sich beide Grundflächen in derselben Ebene, da beide Türme auf dem gleichen Boden stehen. Somit ist die erste Bedingung erfüllt.
Prüfung der 2. Bedingung:
Die Deckflächen der beiden Türme sind aufgrund der gleichgroßen Bauklötze ebenfalls gleich. Da beide Türme aus derselben Anzahl an Bauklötzen bestehen sind beide Türme gleich hoch. Somit liegen die Deckflächen ebenfalls in einer Ebene. Die zweite Bedingung ist somit auch erfüllt.
Prüfung der 3. Bedingung:
Verschiebst Du die Grundebene der Türme jeweils bildlich um die Höhe der einzelnen Bauklötze, so siehst Du, dass die Parallelebenen jeweils inhaltsgleiche Flächen aus den beiden Körpern ausschneidet. Die herausgeschnittenen Flächen sind bei beiden Türmen jeweils so groß wie die Grundflächen. Die dritte Bedingung ist also ebenfalls erfüllt.
Alle Bedingungen sind erfüllt und die beiden Türme sollten somit volumengleich sein.
Zum Beweis der Gültigkeit des Prinzips von Cavalieri kannst Du Dir das Beispiel mit den beiden Türmen weiter ansehen, indem Du von beiden Türmen das Volumen berechnest. Beide Türme bestehen aus denselben, gleich großen Bauklötzen mit dem gleichen Volumen. Um jeweils das Gesamtvolumen der beiden Türme zu berechnen, addierst Du das Volumen der einzelnen Bauklötze. Nehme einmal an, das Volumen eines Bauklotzes beträgt . Bei 6 Klötzen beträgt das Gesamtvolumen . Das Gesamtvolumen der beiden Türme ist somit gleich und die Gültigkeit des Prinzip von Cavalieri für dieses Beispiel bewiesen.
Damit hast Du ein erstes Beispiel für die Gültigkeit des Prinzips von Cavalieri kennengelernt.
Der Ansatz von Cavalieri, das Berechnen vom Volumen V auf Flächen zurückzuführen, stellte einen entscheidenden Schritt in der Entwicklung der Integralrechnung dar. In seinem Werk Geometria indivisibilibus ging er erstmals auf die Einteilung von Körpern in unendlich viele Schnittflächen ein.
"Geometria indivisibilibus", mit ganzem Namen „Geometria indivisibilibus continuorum nava quadam ratione promata“ ist das Hauptwerk von Cavalieri, welches 1635 veröffentlicht wurde. Hierin berechnet er nach der Methode der Indivisiblen Flächeninhalte und Volumina.
Indivisiblen waren für Cavalieri unendlich kleine, unteilbare Schichten eines Körpers oder einer Fläche. Sie entstehen nach seiner Auffassung wie folgt: Jeder Körper kann zwischen zwei zueinander parallele Ebenen gelegt werden, die ihn in einem Punkt oder einer Begrenzungsfläche berühren. Wenn sich die eine Ebene parallel zu ihrer Ausgangslage zur anderen Ebene hin bewegt, entstehen unendlich viele Schnittflächen der Ebene mit dem Körper. Der Körper repräsentiert die Gesamtheit dieser Schnittflächen.
Cavalieri versuchte, mit diesem Ansatz das Problem der unendlich kleinen Größen zu erfassen. Dieses Problem beschäftigte die Mathematiker seit der Antike. Die Auffassungen Cavalieris führten zu zahlreichen richtigen Erkenntnissen und hatten einen großen Einfluss auf die Erarbeitung von Methoden zur Bestimmung von Flächen- und Rauminhalten. Dazu zählt auch das cavalierische Prinzip.
Die Volumina von zwei Körpern können nun in der Integralrechnung durch unendlich viele Schnittflächen A der Ebene E mit dem Körper betrachtet werden.
Ein Volumenkörper mit einer bestimmten Höhe h kann, von der Grundfläche G ausgehend, waagerecht in unendlich viele Scheiben bzw. Flächen A mit bestimmten Flächeninhalten geschnitten werden. Für das Volumen V dieses Körpers gilt:
Das Volumen V des Körpers ist das Integral von 0 bis h der Flächeninhalte nach .
Für zwei volumengleiche Körper gilt nach dem Prinzip von Cavalieri folglich:
Wenn für alle Werte x zwischen 0 und der Höhe h gilt, dass die Flächen und inhaltsgleich sind, dann sind die Volumina und gleich, die dem Integral von 0 bis h der Flächeninhalte bzw. nach entsprechen.
Bei der modernen theoretischen Herangehensweise wird jedoch der Bezug zwischen Integral, Flächeninhalt und Volumen nicht mehr typischerweise mit dem Prinzip von Cavalieri hergestellt.
Das Prinzip von Cavalieri kannst Du anwenden, um zwei Körper auf Volumengleichheit zu untersuchen. Vor allem, wenn die Körper unterschiedlich aussehen und Du nicht auf den ersten Blick erkennen kannst, ob die Volumina gleich sind, ist das Prinzip hilfreich.
Im Folgenden findest Du Beispiele, mit denen Du die Anwendung des Prinzips von Cavalieri üben kannst.
In der folgenden Aufgabe soll die Volumengleichheit von zwei Pyramiden überprüft werden.
Aufgabe
Die folgenden zwei Körper sollen mithilfe des Prinzips von Cavalieri auf Volumengleichheit untersucht werden.
Abbildung 6: Prinzip von Cavalieri - Beispiel Pyramide
Lösung
Um die beiden Pyramiden nun auf Volumengleichheit zu untersuchen kannst Du prüfen, ob die drei Bedingungen erfüllt sind, die Du in dieser Erklärung gelernt hast:
Prüfung der 1. Bedingung:
Abbildung 7: Grundflächen G Pyramiden
Als erstes siehst Du Dir die Grundfläche G der Pyramiden an. Sowohl die blaue, als auch die türkise Pyramide haben eine quadratische Grundfläche G mit der Kantenlänge a.
Abbildung 8: Höhe h der Pyramiden
Ebenso liegen sie in derselben Ebene und haben die gleiche Höhe h Somit ist die erste Bedingung erfüllt.
Prüfung der 2. Bedingung:
Eine Deckfläche D haben die beiden Pyramiden nicht. Somit sind beide Deckflächen D gleich 0 und die zweite Bedingung ist auch erfüllt.
Prüfung der 3. Bedingung:
Schneidest Du die beiden Pyramiden an einer bestimmten Höhe h' auf, so erhältst Du eine Schnittfläche A.
Abbildung 9: Schnitthöhe h' und Schnittflächen A der Pyramiden
Diese ist bei beiden Pyramiden quadratisch, weswegen Du die Flächen und wir folgt berechnen kannst:
Somit schneidet jede Parallelebene zur Grundebene aus beiden Körpern inhaltsgleiche Flächen aus.
Alle Bedingungen sind damit erfüllt und die beiden Türme sind nach dem Satz von Cavalieri volumengleich.
Ein bekanntes Beispiel zu Anwendung des Prinzips von Cavalieri ist die Untersuchung des Volumens einer Halbkugel und eines kegelförmig ausgebohrten Zylinders. Im Folgenden wird das Beispiel einmal komplett durchlaufen.
Gegeben sind eine Halbkugel und ein kegelförmig ausgebohrter Zylinder. Mit dem Prinzip von Cavalieri werden diese zwei Körper auf Volumengleichheit untersucht.
Abbildung 10: Halbkugel und kegelförmig ausgebohrter Zylinder
Zu Betrachtung der Schnittflächen wird die Halbkugel und der kegelförmig ausgebohrter Zylinder auf einer beliebigen Höhe h von einer horizontalen Ebene geschnitten. Diese Ebenen sind in Abbildung 11 lila und gelb dargestellt.
Abbildung 11: Halbkugel und kegelförmig ausgebohrter Zylinder
Als Schnittfläche entsteht bei der Kugel der lila Kreis und beim ausgebohrten Zylinder der gelbe Kreisring (Abbildung 12).
Abbildung 12: Schnittflächen der Körper - links von der Halbkugel (AH), rechts vom dem kegelförmig ausgebohrte Zylinder (AZ)
Halbkugel
Für den Radius r' der Fläche an einer beliebigen Höhe h der Halbkugel gilt mit dem Satz von Pythagoras:
Zu Erinnerung: für die Fläche A eines Kreises gilt , wobei r der Radius des Kreises ist
Für die Fläche des Kreises gilt somit:
Ausgebohrter Zylinder
Den gelben Kreisring kannst Du als die Differenz zweier Kreise berechnen, wobei der große Kreis den Radius r besitzt und der kleine Kreis den Radius h:
Vergleichst Du die beiden Flächeninhalte und , so kannst Du sehen, dass diese unabhängig von der Höhe h gleich sind. Mit dem Prinzip von Cavalieri folgt darum, dass die Halbkugel und der ausgebohrte Zylinder das gleiche Volumen V haben müssen, denn alle drei Bedingungen
sind damit erfüllt.
Dies kannst Du nochmal kontrollieren, indem Du die Volumenformeln ansiehst. Für das Volumen der Halbkugel gilt laut Volumenformel:
Ebenso berechnest Du das Volumen des ausgebohrten Zylinders, indem Du das Volumen des inneren Kegels von dem Volumen des Vollzylinders abziehst.
Die Volumina der beiden Körper stimmen somit, wie bereits durch das Prinzip des Cavalieri gesehen, überein.
Das Prinzip von Cavalieri besagt, dass zwei Körper mit gleicher Höhe volumengleich sind, wenn jede zur Grundebene parallel verlaufende Ebene beide Körper in gleich großen Flächen schneidet.
Bonaventura Cavalieri veröffentlichte 1635 sein Hauptwerk „Geometria indivisibilibus continuorum nava quadam ratione promata“ .
Der Satz von Cavalieri lautet: Zwei Körper gleicher Höhe sind volumengleich, wenn sie in jeweils gleicher Höhe flächengleiche Querschnitte haben.
Karteikarten in Prinzip von Cavalieri3
Lerne jetztWas besagt das Prinzip von Cavalieri?
Das Prinzip von Cavalieri besagt, dass zwei Körper mit gleicher Höhe volumengleich sind, wenn jede zur Grundebene parallel verlaufende Ebene beide Körper in gleich großen Flächen schneidet.
Was sind die drei Bedingungen für Volumengleichheit?
Won wem stammt das Prinzip von Cavalieri?
Bonaventura Cavalieri
Du hast bereits ein Konto? Anmelden
Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.
Melde dich an für Notizen & Bearbeitung. 100% for free.
Speichere Erklärungen in deinem persönlichen Bereich und greife jederzeit und überall auf sie zu!
Mit E-Mail registrieren Mit Apple registrierenDurch deine Registrierung stimmst du den AGBs und der Datenschutzerklärung von StudySmarter zu.
Du hast schon einen Account? Anmelden