Open in App
Login Anmelden

Select your language

Suggested languages for you:
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|
Drachenviereck

Im Herbst siehst Du sie wieder fast überall: die Flugdrachen, mit denen sich so einige Kinder und Erwachsene bei windigem Wetter gerne vergnügen. In der Mathematik lernst du die Figur des ähnlich aussehenden Drachenvierecks noch einmal auf eine ganz andere Weise kennen.

Inhalt von Fachexperten überprüft
Kostenlose StudySmarter App mit über 20 Millionen Studierenden
Mockup Schule

Entdecke über 50 Millionen kostenlose Lernmaterialien in unserer App.

Drachenviereck

Illustration

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmelden

Nie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmelden
Illustration

Im Herbst siehst Du sie wieder fast überall: die Flugdrachen, mit denen sich so einige Kinder und Erwachsene bei windigem Wetter gerne vergnügen. In der Mathematik lernst du die Figur des ähnlich aussehenden Drachenvierecks noch einmal auf eine ganz andere Weise kennen.

Drachenviereck Flugdrache StudySmarter

Drachenviereck – Definition und Eigenschaften

Mathematisch betrachtet, hat das Drachenviereck viel mehr zu bieten, als das Kinderspielzeug Flugdrache. Was ein Drachenviereck so besonders macht, erfährst Du nun in den nächsten Abschnitten.

Drachenviereck Definition

Ein Drachenviereck ist ein ganz bestimmtes Viereck. Die Definition zeigt Dir seine Besonderheiten.

Ein Drachenviereck ist ein Viereck, das diese drei Eigenschaften erfüllt:

  • Je zwei anliegende Seiten sind gleich lang (a=d, b=c)
  • Die beiden Diagonalen e und f stehen senkrecht aufeinander
  • Es ist achsensymmetrisch zu einer Diagonalen (e)

Drachenviereck Definition StudySmarter

Abbildung 1: Drachenviereck Definition

Drachenviereck Eigenschaften

Sehen wir uns die Eigenschaften nochmal genauer an.

Seitenlängen

Jeweils zwei anliegende Seitenlängen sind genau gleich lang. In diesem Beispiel sind also die Seiten a und d von der Länge identisch und auch die Seiten b und c sind gleich lang. Die Seiten bilden demnach zwei Seitenpaare (orange und blau).

Drachenviereck Seitenlängen StudySmarter

Abbildung 2: Drachenviereck Seitenlängen

Es gilt also a=d und b=c.

Winkel

Die beiden Winkel zwischen kurzer und langer Seite sind genau gleich groß (β=δ).

Drachenviereck Winkelgrößen StudySmarterAbbildung 3: Drachenviereck Winkel

In einem Drachenviereck ergibt das also jeweils, zwischen kurzer und langer Seite, zweimal den Winkel β.

Diagonale

Die Diagonalen des Drachenvierecks sind wichtig für dessen Form. Diese Eigenschaften solltest Du zu den Diagonalen kennen:

  • Die Diagonalen e und f stehen senkrecht aufeinander und schließen einen rechten Winkel ein.
  • Die Diagonale e ist zugleich Symmetrieachse des Drachenvierecks und teilt es in zwei kongruente Dreiecke (siehe unten).
  • Demnach teilt die Diagonale e auch die Strecke der Diagonale f in zwei gleich große Abschnitte und halbiert die beiden Winkel α und γ genau mittig.

Drachenviereck Diagonalen StudySmarterAbbildung 4: Drachenviereck Diagonalen

Achsensymmetrie

Das Drachenviereck ist achsensymmetrisch zur längeren der Diagonalen. Es kann also an der Diagonale e gespiegelt werden.

Die Symmetrieachse beziehungsweiße Diagonale e teilt das Drachenviereck in zwei gleich große, kongruente Dreiecke ABC und ACD.

Drachenviereck Achsensymmetrie StudySmarterAbbildung 5: Drachenviereck Achsensymmetrie

Überblick - Eigenschaften des Drachenvierecks

Drachenviereck Überblick StudySmarterAbbildung 6: Drachenviereck Überblick

Seitenlängen:a=d, b=c

Winkelgrößen:β=δ

Diagonalen: Senkrecht aufeinander;

Diagonale e halbiert die Winkel α und γ, sowie die Diagonale f

Achsensymmetrie: Achsensymmetrisch zur längeren Diagonale e

Drachenviereck konstruieren

Du kannst ein Drachenviereck auf viele verschiedene Arten konstruieren. Dabei nutzt Du immer die Maße, die Dir gegeben sind.

Aufgabe 7

Gegeben sind die Seite a=3cm, b=5cm und β=105°. Zeichne das passende Drachenviereck ABCD.

Lösung

Schritt 1:

Beginne zunächst immer mit einer Planfigur. Diese muss nicht maßstabsgetreu sein, aber alle Bezeichnungen des allgemeinen Drachenvierecks richtig wiedergeben.

Drachenviereck Planfigur Drachenviereck StudySmarterAbbildung 7: Planfigur

Schritt 2:

Anhand der Planfigur erkennst Du, welche Größen Du gegeben hast und wie diese zusammenhängen. Starte dann mit der Zeichnung.

ZeichnungErklärung

Drachenviereck konstruieren Schritt 1 StudySmarterAbbildung 8: Schritt 1

Zeichne die Strecke a in Dein Heft.

Drachenviereck konstruieren Schritt 2 StudySmarterAbbildung 9: Schritt 2

Messe dann mithilfe Deines Geodreiecks den gegebenen Winkel von β=105° am Punkt B ab.

Drachenviereck konstruieren Schritt 3 StudySmarterAbbildung 10: Schritt 3

Steche nun mit Deinem Zirkel am Punkt B ein und konstruiere einen Kreis mit der Länge der gegebenen Strecke b=5cm.

Drachenviereck konstruieren Schritt 4 StudySmarterAbbildung 11: Schritt 4

An dem Punkt, an dem sich die Linie und der Kreis schneiden, befindet sich Punkt C.

Drachenviereck konstruieren Schritt 5 StudySmarterAbbildung 12: Schritt 5

Anschließend verbindest Du die Punkte C und A zu einer Diagonalen.An dieser Diagonalen legst Du Dein Geodreieck im 90°-Winkel an und fällst ein Lot zur Diagonalen durch den Punkt B.

Drachenviereck konstruieren Schritt 6 StudySmarterAbbildung 13: Schritt 6

Nutze Deinen Zirkel ein weiteres Mal, indem Du bei A einstichst und einen Kreis mit dem Radius a=d=3cm einzeichnest.

Drachenviereck konstruieren Schritt 7 StudySmarterAbbildung 14: Schritt 7

Der Schnittpunkt ergibt den Punkt D.

Drachenviereck konstruieren Schritt 8 StudySmarterAbbildung 15: Schritt 8

Den Punkt D musst Du jetzt nur noch mit A und C verbinden.

Damit hast Du dieses Drachenviereck gezeichnet. Super!

Flächeninhalt Drachenviereck berechnen – Formel

Wie Du bestimmt bereits gemerkt hast, nehmen die Diagonalen eine zentrale Rolle im Drachenviereck ein. So sind sie auch von Bedeutung bei der Berechnung des Flächeninhalts des Drachenvierecks.

Die Formel zur Berechnung des Flächeninhalts A des Drachenvierecks lautet im Allgemeinen...

A=12·e·f

e,f = Diagonalen des Drachenvierecks

Um den Flächeninhalt A eines Drachenvierecks zu berechnen, musst Du nur noch die gegebenen Größen für die beiden Diagonalen e und f in die Formel einsetzen.

Aufgabe 1

Gegeben ist ein Drachenviereck ABCD und dessen Diagonalen e=7cm und f=4cm. Wie groß ist der Flächeninhalt A des Vierecks ABCD?

Lösung

Gehe dabei in diesen zwei einfachen Schritten vor.

Schritt 1:

Stelle die Formel für den Flächeninhalt A des Drachenvierecks auf. Diese lernst Du am besten auswendig.

A=12·e·f

Schritt 2:

Setze die Längen der Diagonalen e=7cm und f=4cm in die Formel ein und berechne den Wert des Flächeninhalts.

A=12·7cm·4cm=14cm2

Der Flächeninhalt A dieses Drachenvierecks beträgt 14 cm2.

Um mehr über den Flächeninhalt des Drachenvierecks und dessen Herleitung zu erfahren, sieh dir den Artikel Flächeninhalt Drachenviereck an.

Drachenviereck Umfang berechnen – Formel

Zur Berechnung des Umfangs eines Drachenviereks sollten Dir die Eigenschaften zu den Seitenlängen des Drachenvierecks ein Begriff sein. Denn der Umfang U gibt die Länge des Seitenrandes einer Figur an.

Drachenviereck Umfang StudySmarterAbbildung 16: Drachenviereck Umfang

Legst Du um das gesamte Drachenviereck, also einmal komplett außenrum, eine Schnur und misst dann ihre Länge, kommt Folgendes zur Länge der Schnur beziehungsweise zum Umfang U des Vierecks heraus:

U=a+b+c+d

Erinnere Dich jedoch wieder an die Eigenschaften, denn die Seiten a und d, sowie b und c sind genau gleich lang. Deshalb sieht die Formel zur Umfangsberechnung so aus:

Die Formel zur Berechnung des Umfangs U eines allgemeinen Drachenvierecks lautet...

U=2a+2b

a, b = Seitenlängen des Drachenvierecks.

Rechne das Ganze anhand eines Beispiels einmal selbst durch.

Aufgabe 2

Gegeben ist das folgende Drachenviereck ABCD mit seinen Seitenlängen a=3cm und c=5cm.

Berechne den Umfang U dieses Vierecks.

Drachenviereck Aufgabe StudySmarterAbbildung 17: Drachenviereck Aufgabe Umfang

Lösung

In zwei Schritten bist Du am Ziel.

1. Schritt:

Stelle die Formel für den Umfang eines Drachenvierecks auf. Diese solltest Du Dir am besten auswendig lernen oder herleiten können (Umfang ist so lang wie eine Schnur um das gesamte Viereck).

In diesem Beispiel ist nur die Strecke c gegeben. Da aber die Strecken b und c gleich lang sind, kannst du in der Formel auch b durch c ersetzen.

U=2a+2b=2a+2c

2. Schritt:

Setze die gegebenen Werte in die Formel ein und berechne den Umfang U.

U=2·3cm+2·5cm=6cm+10cm=16cm

Der Umfang U dieses Drachenvierecks beträgt 16 cm.

Auch hierzu gibt es nochmal einen detaillierten Artikel "Umfang Drachenviereck" zum genaueren Nachlesen.

Drachenviereck Diagonale berechnen – Formel

Zu den Eigenschaften der Diagonalen solltest Du dir nochmal den oberen Abschnitt durchlesen. Diese Eigenschaften sind die Grundlage zum Lösen der verschiedensten Rechenaufgaben zu den Diagonalen des Drachenvierecks.

Es gibt viele verschiedene Variationen an Aufgaben zur Diagonalen. Die wichtigsten werden hier anhand von Beispielen behandelt.

Drachenviereck Überblick StudySmarterAbbildung 18: Drachenviereck Überblick

Für alle folgenden Beispielaufgaben gilt modellhaft dieses Drachenviereck.

Aufgabe 3

Gegeben ist das Drachenviereck ABCD, sein Flächeninhalt A=20cm2 und eine der Diagonalen e=8cm.

Wie lang ist die zweite Diagonale f?

Lösung

Zunächst sollten Dir die Zusammenhänge der gegebenen Größen im Drachenviereck klar sein.

In diesem Fall hängen der Flächeninhalt und die gesuchte Diagonale über die Berechnungsformel des Flächeninhalts zusammen. Diese lautet...

A=12·e·f

Die Formel kannst Du jetzt nach der gesuchten Größe umstellen.

A=12·e·f |·22·A=e·f |:e2·Ae=f

Dann ist der Weg nicht mehr weit, Du musst nur noch die bereits gegebenen Größen einsetzen und den Wert der Diagonale berechnen.

f=2·Ae=2·20cm28cm=40cm28cm=5cm

Die Diagonale f ist 5 Zentimeter lang.

Aufgabe 4

Gegeben ist der Flächeninhalt des Dreiecks ABC A=12cm2 und die Länge der Diagonale e=8cm.

Wie lang ist die Diagonale f?

Lösung

Hierbei machst Du Dir die Eigenschaft zu Nutze, dass die Diagonale e das Drachenviereck in zwei kongruente Dreiecke schneidet und außerdem die Diagonale f genau mittig halbiert.

Schaue Dir also in diesem Fall zu Beginn nur das Dreieck ABC an, um die Aufgabe zu lösen.

Drachenviereck Aufgabe StudySmarterAbbildung 19: Drachenviereck Aufgabe Diagonale

Der Flächeninhalt eines Dreiecks wird mithilfe dieser Formel berechnet:

A=12·e·he

Die Höhe eines Dreiecks zu einer bestimmten Seite (hier e) ist dabei immer das senkrechte Lot zur Seite, dass durch den gegenüberliegenden Punkt verläuft. In diesem Fall steht die Hälfte der Strecke f senkrecht auf e und geht durch den Punkt B. Das heißt die Höhe lautet he=12f .

A=12·e·12f

Diese Formel muss jetzt nur noch nach der gesuchten Größe (f) umgestellt werden.

A=12·e·12f A=14·e·f |·44·A=e·f |:e4·Ae=f

Jetzt musst Du nur noch alle Werte einsetzen und f berechnen.

f=4·Ae=4·12cm28cm=44·3cm22cm=22·3cm=6cm

Die Diagonale f besitzt eine Länge von 6 cm.

Weitere wichtige Rechenaufgaben zu den Diagonalen des Drachenvierecks findest du im Artikel "Diagonale Drachenviereck".

Seitenlänge Drachenviereck berechnen – Formel

Auch hierzu ist das Basiswissen aus dem oberen Abschnitt zu den Seitenlängenpaaren wichtig. Lese Dir das nochmal durch, erst dann solltest Du Dich den folgenden Aufgaben zuwenden. Bei diesem Thema findest Du ebenfalls mehr Infos im eigenständigen Artikel "Seitenlänge Drachenviereck", jedoch werden hier die wichtigsten Aufgabentypen behandelt.

Drachenviereck Überblick StudySmarterAbbildung 20: Drachenviereck Überblick

Alle wichtigen Größen beziehen sich von der Aufteilung her auf dieses Drachenviereck.

Aufgabe 5

Gegeben sind die Größen a=2cm, e=8cm, 12f=1,5cm und der Umfang U=18cm.

Berechne alle fehlenden Größen (b,c,d,f).

Lösung

Schritt 1:

Es handelt sich um ein Drachenviereck, das heißt es gilt das Seitenlängenpaar a=d. Damit ist ...

a=d=2cm

Schritt 2:

Um f zu erhalten, musst du die Gleichung umstellen.

12f=1,5cm |·2f=3cm

Schritt 3:

Nun fehlen noch die Größen b und c. Hier musst Du den Umfang U heranziehen. Die Formel für den Umfang des Drachenvierecks lautet...

U=2a+2b

Stelle die Formel nach der gesuchten Größe b um und setze alles gegebene ein.

U=2a+2b |-2aU-2a=2b |:2b=U-2a2b=18cm-2·2cm2=14cm2=7cm

Da b und c gleich lang sind gilt für c ebenfalls c=7cm.

Somit sind alle fehlenden Größen gefunden. Super!

Aufgabe 6

Gegeben ist der Winkel γ=60° und die Seite f=6cm .

Berechne die Länge der Seite c.

Lösung

Bei diesen typischen Aufgabentypen zum Drachenviereck ist das Teilgebiet der Trigonometrie von Bedeutung. Sollte Dir das nicht mehr so viel sagen, mache Dich im Artikel Trigonometrie noch einmal schlau.

Drachenviereck Überblick StudySmarterAbbildung 21: Drachenviereck Aufgabe Seitenlängen

Bei dieser Aufgabe ist das Dreieck CDM von Bedeutung. Es ist ein rechtwinkliges Dreieck, hier kann also mit Sinus, Kosinus und Tangens gerechnet werden.

Und genau das nutzt Du auch aus:

  • Du kennst den Winkel γ, der durch e genau halbiert wird.
  • Die Strecke 12f ist in diesem Dreieck die Gegenkathete des Winkel γ. Du kannst sie Dir ausrechnen, da die Länge der Strecke f gegeben ist.

Um jetzt c zu bekommen, hilft Dir der Sinus, denn für diesen gilt...

sin(α)=GegenkatheteHypothenuse

Das entspricht in diesem Beispiel...

sin(12γ)=12fc

Jetzt muss nur noch umgestellt, eingesetzt und berechnet werden.

c=12fsin(12γ)=12·6cmsin(12·60°)=3cmsin (30°)=3cm0,5=6cm

Die Seite c hat also eine Länge von 6 cm.

Weitere Beispielaufgaben findest du in den Übungen und Flashcards.

Drachenviereck – Das Wichtigste

  • Ein Drachenviereck ist ein Viereck, das diese drei Eigenschaften erfüllt:
  • Je zwei anliegende Seiten sind gleich lang (a=d, b=c)
  • Die beiden Diagonalen e und f stehen senkrecht aufeinander
  • Es ist achsensymmetrisch zu einer Diagonale (e)
  • Jedes Drachenviereck besitzt folgende Eigenschaften (exemplarisch anhand dieses Drachenvierecks):Drachenviereck Eigenschaften StudySmarter
  • Seitenlängen:a=d, b=c
  • Winkelgrößen:β=δ
  • Diagonalen:Senkrecht aufeinander;

    Diagonale e halbiert die Winkel α und γ, sowie die Diagonale f

  • Achsensymmetrie: Achsensymmetrisch zur längeren Diagonale e

  • Der Flächeninhalt A des Drachenvierecks lautet im Allgemeinen: A=12·e·f (e, f = Diagonalen des Drachenvierecks)
  • Der Umfang eines allgemeinen Drachenvierecks lautet: U=2a+2b (a, b = Seitenlängen des Drachenvierecks)

Häufig gestellte Fragen zum Thema Drachenviereck

Ein Drachenviereck hat folgende Eigenschaften:

  • Je zwei anliegende Seiten sind gleich lang (a = d und b = c)
  • Die beiden Diagonalen e und f stehen senkrecht aufeinander.
  • Die Winkel zwischen kurzer und langer Seite sind jeweils gleich groß.
  • Es ist achsensymmetrisch zur längeren Diagonale (e)

Ein Drachenviereck ist ein Viereck, definiert durch folgende Eigenschaften:

  • Je zwei anliegende Seiten sind gleich lang (a = d und b = c)
  • Die beiden Diagonalen e und f stehen senkrecht aufeinander
  • Es ist achsensymmetrisch zu einer Diagonale (e)

Die Raute ist eine besondere Form des Drachenvierecks, bei dem nicht nur jeweils zwei Seiten, sondern alle Seiten gleich lang sind.

Bei einem Drachenviereck sind die beiden Winkel jeweils zwischen kurzer und langer Seite gleich groß.

Finales Drachenviereck Quiz

Drachenviereck Quiz - Teste dein Wissen

Frage

Besitzt ein Drachenviereck Punkt- oder Achsensymmetrie?

Antwort anzeigen

Antwort

Das Drachenviereck ist achsensymmetrisch zur Längeren der Diagonalen e.

Es besitzt keine Punktsymmetrie.

Frage anzeigen

Frage

Welche Eigenschaften haben die Diagonalen eines Drachenvierecks?

Antwort anzeigen

Antwort

Diese Eigenschaften solltest Du zu den Diagonalen kennen:

  • Die Diagonalen e und f stehen senkrecht aufeinander und bilden einen rechten Winkel.
  • Die Diagonale e ist zugleich Symmetrieachse des Drachenvierecks und teilt es in zwei kongruente Dreiecke (siehe unten).
  • Demnach teilt die Diagonale e auch die Strecke der Diagonale f in zwei gleich große Abschnitte und halbiert die beiden Winkel α und γ genau mittig.

Frage anzeigen

Frage

Wie wird der Umfang mathematisch abgekürzt?


Antwort anzeigen

Antwort

Mit dem Großbuchstaben U

Frage anzeigen

Frage

Welche Eigenschaften lassen sich dem Drachenviereck zuordnen?


Antwort anzeigen

Antwort

Es hat zwei Symmetrieachsen

Frage anzeigen

Frage

Was ist der Unterschied zwischen dem Umfang und dem Flächeninhalt?


Antwort anzeigen

Antwort

Die eingeschlossene Fläche beschreibt den Flächeninhalt, während der Umfang das äußerlich Umschließende angibt (Sprich die Länge des Randes der Figur).


Frage anzeigen

Frage

Was unterscheidet ein Drachenviereck von einer Raute?


Antwort anzeigen

Antwort

Beim Drachenviereck sind jeweils zwei Seiten gleich lang 

Frage anzeigen

Frage

Überprüfe folgende Aussagen zum Drachenviereck!


Antwort anzeigen

Antwort

Die Diagonalen sind immer unterschiedlich lang

Frage anzeigen

Frage

Was ist ein Drachenviereck?

Antwort anzeigen

Antwort

Das Drachenviereck gehört der Gruppe der Vierecke an und weist insgesamt vier Seiten auf, wobei jeweils zwei aneinander angrenzende Seiten gleich lang sind. Ein weiteres wichtiges Merkmal des Drachenvierecks ist, dass jene Diagonale, welche von oben nach unten verläuft, zugleich die Symmetrieachse der Figur darstellt.


Frage anzeigen

Frage

Was muss im Drachenviereck gegeben sein, damit die Diagonale f ermittelt werden kann?

Antwort anzeigen

Antwort

Bei gegebenem Flächeninhalt und einer gegebenen Diagonale

Frage anzeigen

Frage

Was unterscheidet ein Drachenviereck von einem Rechteck?

Antwort anzeigen

Antwort

Beim Drachenviereck können im Gegensatz zum Rechteck alle Winkel beliebig groß sein und jeweils zwei aneinandergrenzenden Linien sind gleich lang, nicht die gegenüberliegenden wie beim Rechteck!

Frage anzeigen

Frage

Wie viele Winkel sind im Drachenviereck immer gleich groß?

Antwort anzeigen

Antwort

2

Frage anzeigen

Frage

Überprüfe folgende Aussage:
"Ein Drachenviereck wird zu einer Raute, wenn alle Seiten gleich lang sind"

Antwort anzeigen

Antwort

Richtig

Frage anzeigen

Frage

Was ist die Seitenlänge eines Drachenvierecks?


Antwort anzeigen

Antwort

Die Seitenlänge eines Drachenvierecks sind die Begrenzungslinien der Figur. Eine Seitenlänge ist die Strecke von einem Eckpunkt zum angrenzenden Eckpunkt.


Frage anzeigen

Frage

In welcher Einheit werden die Seitenlänge angegeben?

Antwort anzeigen

Antwort

Die Seitenlängen werden in den Längeneinheiten mm (Millimeter), cm (Centimeter) , dm (Dezimeter) , m (Meter) oder km (Kilometer)  angegeben

Frage anzeigen

Frage

Was ist der Unterschied zwischen einer Raute und einem Drachenviereck?




Antwort anzeigen

Antwort

Alle Seiten der Rauten sind immer gleich lang. Beim Drachenviereck hingegen sind immer jeweils zwei Seiten gleich lang.

Frage anzeigen

Frage

Wie viele Symmetrieachsen hat ein Drachenviereck?


Antwort anzeigen

Antwort

1

Frage anzeigen

Frage

Welche Eigenschaften lassen sich dem Drachenviereck zuordnen?


Antwort anzeigen

Antwort

Es zählt zu der Kategorie der Vierecke 

Frage anzeigen

Frage

Was ist ein Drachenviereck?



Antwort anzeigen

Antwort

Das Drachenviereck gehört der Gruppe der Vierecke an und weist insgesamt vier Seiten auf, wobei jeweils zwei aneinander angrenzende Seiten gleich lang sind. Ein weiteres wichtiges Merkmal des Drachenvierecks ist, dass jene Diagonale, welche von oben nach unten verläuft, zugleich die Symmetrieachse der Figur darstellt.


Frage anzeigen

Frage

Wie viele Winkel sind im Drachenviereck immer gleich groß?



Antwort anzeigen

Antwort

2

Frage anzeigen

Frage

Was ist der Flächeninhalt eines Drachenvierecks?

Antwort anzeigen

Antwort

Der Flächeninhalt eines Drachenvierecks ist ein Maß für die Größe einer Fläche. Er ist abhängig von der Länge der Diagonalen des Drachenvierecks, welche als e und f bezeichnet werden.


Frage anzeigen

Frage

In welcher Einheit wird der Flächeninhalt angegeben?

Antwort anzeigen

Antwort

Eine Fläche wird meistens in mm² (Quadratmillimeter), cm² (Quadratzentimeter), m² (Quadratmeter) oder km² (Quadratkilometer) angegeben.


Frage anzeigen

Frage

Nenne die Formel zur Berechnung des Flächeninhalts A eines Drachenvierecks mit den Diagonalen e und f!



Antwort anzeigen

Antwort

A = (e  ·  f) : 2

Frage anzeigen

Frage

Was ist der Unterschied zwischen einem Rechteck und einem Drachenviereck?


Antwort anzeigen

Antwort

Im Rechteck sind alle vier Winkel 90° und jeweils die gegenüberliegenden Seiten gleich lang. (Nicht die aneinandergrenzenden)

Frage anzeigen

Frage

Was ist die Seitenlänge eines Drachenvierecks?


Antwort anzeigen

Antwort

Die Diagonale eines Drachenvierecks sind die Verbindungslinien zwischen nicht aneinander liegenden Eckpunkten. Sie werden mit e und f bezeichnet.

Frage anzeigen

Frage

In welcher Einheit werden die Diagonalen angegeben?



Antwort anzeigen

Antwort

Die Seitenlängen werden in den Längeneinheiten mm (Millimeter), cm (Centimeter) , dm (Dezimeter) , m (Meter) oder km (Kilometer)  angegeben



Frage anzeigen

Frage

Was ist der Unterschied zwischen einer Raute und einem Drachenviereck?


Antwort anzeigen

Antwort

Alle Seiten der Rauten sind immer gleich lang. Beim Drachenviereck hingegen sind immer jeweils zwei Seiten gleich lang.


Frage anzeigen

Frage

Wie viele Symmetrieachsen hat ein Drachenviereck?

Antwort anzeigen

Antwort

1

Frage anzeigen

Frage

Welche Eigenschaften lassen sich dem Drachenviereck zuordnen?


Antwort anzeigen

Antwort

Die gegenüberliegenden Winkel sind immer gleich groß 


Frage anzeigen

Frage

Mit welchen Buchstaben werden die Diagonalen des Drachenvierecks beschriftet?


Antwort anzeigen

Antwort

e und f

Frage anzeigen

Frage

Was ist ein Drachenviereck?


Antwort anzeigen

Antwort

Das Drachenviereck gehört der Gruppe der Vierecke an und weist insgesamt vier Seiten auf, wobei jeweils zwei aneinander angrenzende Seiten gleich lang sind. Ein weiteres wichtiges Merkmal des Drachenvierecks ist, dass jene Diagonale, welche von oben nach unten verläuft, zugleich die Symmetrieachse der Figur darstellt.


Frage anzeigen

Frage

Wie viele Winkel sind im Drachenviereck immer gleich groß?


Antwort anzeigen

Antwort

2

Frage anzeigen

Frage

Welche Eigenschaften lassen sich dem Drachenviereck zuordnen?


Antwort anzeigen

Antwort

Es hat zwei Symmetrieachsen

Frage anzeigen

Frage

Was ist der Unterschied zwischen dem Umfang und dem Flächeninhalt?


Antwort anzeigen

Antwort

Die eingeschlossene Fläche beschreibt den Flächeninhalt, während der Umfang das äußerlich Umschließende angibt (Sprich die Länge des Randes der Figur).


Frage anzeigen

Frage

Überprüfe folgende Aussagen zum Drachenviereck!


Antwort anzeigen

Antwort

Die Diagonalen sind immer unterschiedlich lang

Frage anzeigen

Frage

Wie viele Symmetrieachsen hat ein Drachenviereck?


Antwort anzeigen

Antwort

1

Frage anzeigen

Frage

Überprüfe folgende Aussage:

"Sind beide Diagonalen eines Drachenvierecks gleich lang, kann es als Raute bezeichnet werden!"

Antwort anzeigen

Antwort

Richtig

Frage anzeigen

Frage

Wie viele Winkel sind im Drachenviereck immer gleich groß?

Antwort anzeigen

Antwort

2

Frage anzeigen

Frage

Welchen Wert weist die Winkelsumme im Drachenviereck auf?

Antwort anzeigen

Antwort

360°

Frage anzeigen

Frage

Beschreibe die Beziehung der Seiten eines Drachenvierecks.

Antwort anzeigen

Antwort

Für die Seiten eines Drachenvierecks gilt:

\[a = d \, \text{und} \, b = c\]

Frage anzeigen

Frage

Nenne die Beziehung der Winkel in einem Drachenviereck.

Antwort anzeigen

Antwort

Für die Winkel in einem Drachenviereck gilt:

\[\beta = \delta\]

Frage anzeigen

Frage

Beschreibe die Beziehung zwischen den zwei Diagonalen im Drachenviereck.

Antwort anzeigen

Antwort

Die zwei Diagonalen im Drachenviereck stehen senkrecht aufeinander.

Frage anzeigen

Frage

Tippe die Mindestanzahl an Werten ein, die Du brauchst, um ein Drachenviereck zu zeichnen.

Antwort anzeigen

Antwort

4

Frage anzeigen

Frage

Nenne das Vorgehen bei der Konstruktion eines Drachenvierecks, wenn a, b und e gegeben sind.

Antwort anzeigen

Antwort

Bei der Konstruktion eines Drachenvierecks mit gegebenem a, b und e gehst Du wie folgt vor:


  1. Diagonale zeichnen
  2. Seite \(b\) konstruieren
  3. Seite \(a\) konstruieren
  4. Eckpunkte verbinden

Frage anzeigen

Frage

Nenne die Kombination an gegebenen Werten, min denen Du kein Drachenviereck konstruieren kannst.

Antwort anzeigen

Antwort

\(a\), \(e\) und \(f\)

Frage anzeigen

Frage

Beschreibe Dein Vorgehen bei der Konstruktion eines Drachenvierecks mit den folgenden gegebenen Werten:

\[a = 4\, \text{cm}, \, b = 7\, \text{cm} \, \text{und} \, \alpha = 50^\circ\]

Antwort anzeigen

Antwort

1. Punkt \(A\) konstruieren

Als Erstes kannst Du an einer beliebigen Stelle den Punkt \(A\) einzeichnen und mit einem leichten Winkel eine Hilfsstrecke, die \(A\) als Startpunkt hat. Aus dieser Hilfsstrecke wird später die Seite \(a\).


2. Winkel \(\alpha\) konstruieren

Im nächsten Schritt kannst Du jetzt den Winkel \(\alpha\) am Eckpunkt \(A\) mithilfe der Hilfsgeraden einzeichnen.


3. Seiten \(a\) konstruieren

Anschließend kannst Du die Länge der Seite \(a\) im Zirkel als Radius einstellen. Dann stichst Du im Punkt \(A\) ein und markierst mit Kreisbögen auf den zwei Hilfsgeraden diese Länge. Die Schnittpunkte der Hilfsgeraden mit den Kreisbögen sind die Punkte \(B\) und \(D\).


4. Seiten \(b\) konstruieren

Jetzt kannst Du die Länge der Seite \(b\) in den Zirkel als Radius einstellen. Danach stichst Du in den Punkt \(B\) ein und zeichnest einen Kreisbogen nach unten. Wenn Du das gemacht hast, behältst Du den Radius bei und stichst aber in den Punkt \(D\) ein. Auch hier zeichnest Du einen Kreisbogen nach unten ein. Der Schnittpunkt der beiden Kreisbögen ist der Punkt \(C\).


5. Eckpunkte verbinden

Zum Schluss verbindest Du jetzt die Punkte \(A\), \(B\), \(C\) und \(D\) miteinander und radierst die Reste der Hilfsgeraden bei den Seiten \(a\) weg.

Frage anzeigen

Frage

Entscheide, mit welchen gegebenen Werten ein Drachenviereck gezeichnet werden kann.

Antwort anzeigen

Antwort

\(a\), \(b\), \(\alpha\), \(f\)

Frage anzeigen

Teste dein Wissen mit Multiple-Choice-Karteikarten

Wie wird der Umfang mathematisch abgekürzt?

Welche Eigenschaften lassen sich dem Drachenviereck zuordnen?

Was unterscheidet ein Drachenviereck von einer Raute?

Weiter

Karteikarten in Drachenviereck46

Lerne jetzt

Besitzt ein Drachenviereck Punkt- oder Achsensymmetrie?

Das Drachenviereck ist achsensymmetrisch zur Längeren der Diagonalen e.

Es besitzt keine Punktsymmetrie.

Welche Eigenschaften haben die Diagonalen eines Drachenvierecks?

Diese Eigenschaften solltest Du zu den Diagonalen kennen:

  • Die Diagonalen e und f stehen senkrecht aufeinander und bilden einen rechten Winkel.
  • Die Diagonale e ist zugleich Symmetrieachse des Drachenvierecks und teilt es in zwei kongruente Dreiecke (siehe unten).
  • Demnach teilt die Diagonale e auch die Strecke der Diagonale f in zwei gleich große Abschnitte und halbiert die beiden Winkel α und γ genau mittig.

Wie wird der Umfang mathematisch abgekürzt?


Mit dem Großbuchstaben U

Welche Eigenschaften lassen sich dem Drachenviereck zuordnen?


Es hat zwei Symmetrieachsen

Was ist der Unterschied zwischen dem Umfang und dem Flächeninhalt?


Die eingeschlossene Fläche beschreibt den Flächeninhalt, während der Umfang das äußerlich Umschließende angibt (Sprich die Länge des Randes der Figur).


Was unterscheidet ein Drachenviereck von einer Raute?


Beim Drachenviereck sind jeweils zwei Seiten gleich lang 

Mehr zum Thema Drachenviereck

Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

  • Karteikarten & Quizze
  • KI-Lernassistent
  • Lernplaner
  • Probeklausuren
  • Intelligente Notizen
Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App! Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

Melde dich an für Notizen & Bearbeitung. 100% for free.

Fang an mit StudySmarter zu lernen, die einzige Lernapp, die du brauchst.

Jetzt kostenlos anmelden
Illustration