StudySmarter: Besser Lernen
4.5 • +22k Bewertungen
Mehr als 22 Millionen Downloads
Kostenlos
|
|
Einheitsvektor

Du möchtest wissen, was genau ein Einheitsvektor ist, welche Schreibweise dafür benutzt wird und wie Du den Einheitsvektor berechnen kannst? Lies weiter und erfahre mehr über die Einheitsvektor-Formel und die Anwendung in Beispielen. Überprüfe anschließend gerne Dein Wissen zum Einheitsvektor mit den Aufgaben am Ende dieser Erklärung!

Mockup Schule Mockup Schule

Entdecke über 50 Millionen kostenlose Lernmaterialien in unserer App.

Einheitsvektor

Illustration

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmelden

Nie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmelden
Illustration

Du möchtest wissen, was genau ein Einheitsvektor ist, welche Schreibweise dafür benutzt wird und wie Du den Einheitsvektor berechnen kannst? Lies weiter und erfahre mehr über die Einheitsvektor-Formel und die Anwendung in Beispielen. Überprüfe anschließend gerne Dein Wissen zum Einheitsvektor mit den Aufgaben am Ende dieser Erklärung!

Einheitsvektor – Schreibweise & Erklärung

Als Einheitsvektor \(\vec{e}\) wird ein Vektor mit der Länge \(1\) bezeichnet: \(|\vec{e}|=1\).

Zu jedem Vektor \(\vec{a}\), der kein Nullvektor ist, lässt sich der zugehörige Einheitsvektor (normierter Vektor) ermitteln, der mit \(\vec{e}_a\) oder \(\hat{a}\) oder \(\vec{a}^0\) gekennzeichnet wird und ebenfalls die Länge \(1\) besitzt.

Die nachfolgende Grafik zeigt Dir einen Vektor \(\vec{a}\) sowie den zugehörigen Einheitsvektor \(\vec{e}_a\) mit der Länge \(|\vec{e}_a|=1\).

Einheitsvektor Vektor und normierter Vektor StudySmarterAbb. 1 - Vektor und normierter Vektor.

Der normierte Vektor \(\vec{e}_a\) (Einheitsvektor) zeigt dabei in dieselbe Richtung wie der Vektor \(\vec{a}\), hat jedoch eine Länge von \(1\).

Im kartesischen zweidimensionalen Koordinatensystem können die \(x\)- und \(y\)-Achse ebenfalls mit Einheitsvektoren ausgestattet werden. Diese werden Basisvektoren genannt, mit:

\[\vec{e}_x=\left( \begin{array}{c} 1 \\ 0 \end{array}\right) \hspace{1cm} \vec{e}_y=\left( \begin{array}{c} 0 \\ 1 \end{array} \right)\]

Wie kannst Du nun den Einheitsvektor zu einem gegebenen Vektor berechnen?

Einheitsvektor berechnen

Der zu einem Vektor \(\vec{a}\) zugehörige Einheitsvektor \(\vec{e}_a\) wird berechnet, indem zunächst der Betrag \(|\vec{a}|\) ermittelt, der Kehrwert gebildet und anschließend mit dem Vektor \(\vec{a}\) multipliziert wird. Somit wird der Vektor \(\vec{a}\) auf die Länge \(1\) normiert.

Zusammengefasst ergibt sich die folgende Formel zur Berechnung des Einheitsvektors.

Einheitsvektor – Formel

Sei \(\vec{a}\) ein Vektor mit einer Länge ungleich Null \((|\vec{a}|\neq 0)\), dann lässt sich der zugehörige Einheitsvektor \(\vec{e}_a\) über die Formel

\[\vec{e}_a=\frac{1}{|\vec{a}|}\cdot \vec{a}\] bestimmen.

Möchtest Du einen Vektor \(\vec{a}\) normieren, also den zugehörigen Einheitsvektor \(\vec{e}_a\) berechnen, so benötigst Du zunächst den Betrag \(|\vec{a}|\) des Vektors \(\vec{a}\).

In der Erklärung „Betrag eines Vektors“ kannst Du alles rund um die Berechnung des Betrags nachlesen.

Hast Du den Betrag \(|\vec{a}|\) des Vektors \(\vec{a}\) berechnet, kannst Du den Kehrwert \(\frac{1}{|\vec{a}|}\) bilden und anschließend mit dem Vektor \(\vec{a}\) multiplizieren.

Sieh Dir zur Anwendung der Formel gleich Beispiele zum Einheitsvektor an!

Einheitsvektor – Beispiele

Einheitsvektoren (Vektoren mit der Länge 1) zeigen Dir die Richtung eines Vektors oder einer Koordinatenachse im Koordinatensystem an. Somit kannst Du mit Einheitsvektoren von einem Punkt im Koordinatensystem auch Strecken antragen.

Einheitsvektor bestimmen – Beispiel Vektor normieren

Der normierte Vektor (Einheitsvektor) \(\vec{e}_a\) eines Vektors \(\vec{a}\) im dreidimensionalen Raum erfolgt über die Formel \(\vec{e}_a=\frac{1}{|\vec{a}|}\cdot \vec{a}\). Dazu wird der Betrag \(|\vec{a}|\) des Vektors \(\vec{a}\) benötigt.

Für den Vektor \(\vec{a}\) soll der normierte Vektor \(\vec{e}_{a}\) bestimmt werden.

\[\vec{a}=\left(\begin{array}{c} 4 \\ 0 \\ 3 \end{array}\right)\]

Lösung

Zunächst berechnest Du die Länge des Vektors \(|\vec{a}|\) über den Betrag:

\[|\vec{a}|=\sqrt{4^2+0^2+3^2}=\sqrt{25}=5\]

Der Betrag wird nun in die Formel für den zugehörigen Einheitsvektor \(\vec{e}_{a}\) eingesetzt.

\[\vec{e}_{a}=\frac{1}{{\color{#1478C8}|\vec{a}|}}\cdot {\color{#FA3273}\vec{a}}=\frac{1}{{\color{#1478C8}5}}\cdot {\color{#FA3273}\left( \begin{array}{c} 4\\ 0 \\ 3 \end{array} \right)}=\left( \begin{array}{c}{\color{#00DCB4}\frac{1}{5}}\cdot 4\\ {\color{#00DCB4}\frac{1}{5}}\cdot 0 \\{\color{#00DCB4}\frac{1}{5}}\cdot 3 \end{array} \right)= \left( \begin{array}{c}\frac{4}{5}\\ 0 \\ \frac{3}{5}\end{array} \right)\]

Hast Du den Einheitsvektor \(\vec{e}_{a}\) berechnet, kannst Du noch einmal überprüfen, ob die Berechnung korrekt war, indem Du den Betrag \(|\vec{e}_{a}|\) ermittelst:

\[|\vec{e}_{a}|=\sqrt{\left( \frac{4}{5} \right)^2 + 0^2+ \left( \frac{3}{5} \right)^2} = \sqrt{ \frac{16+9}{25} }= \sqrt{1} = 1\,\,\, {\color{#00DCB4}\checkmark}\]

Mit dem Einheitsvektor kannst Du auch Strecken antragen, wie Du im nächsten Beispiel sehen kannst.

Einheitsvektor bestimmen – Beispiel Strecke abtragen

Hast Du die Koordinaten eines Punkts \(P\) im Raum gegeben sowie eine durch einen Vektor \(\vec{a}\) vorgegebene Richtung, so lassen sich Streckenlängen in diese Richtung über den Einheitsvektor \(\vec{e}_a\) antragen und der Zielpunkt \(P'\) berechnen.

Gegeben ist ein Punkt \(P\,(1|5|2)\). Ermittle die Koordinaten des Punkts \(P'\), wenn der Punkt \(P\) um \(12\) Einheiten in Richtung des Vektors \(\vec{a}\) verschoben wird.

\[\vec{a}=\left(\begin{array}{c} 2 \\ 2 \\ 1 \end{array}\right)\]

Lösung

Zunächst wird der Vektor \(\vec{a}\) auf die Länge \(1\) normiert.

\[\vec{e}_{a}=\frac{1}{{\color{#1478C8}|\vec{a}|}}\cdot {\color{#FA3273}\vec{a}}=\frac{1}{{\color{#1478C8}\sqrt{2^2+2^2+1^2}}}\cdot {\color{#FA3273}\left( \begin{array}{c} 2\\ 2 \\ 1 \end{array} \right)}=\frac{1}{{\color{#1478C8}3}}\cdot\left( \begin{array}{c} 2\\ 2\\ 1 \end{array} \right)= \left( \begin{array}{c}\frac{2}{3}\\ \frac{2}{3} \\ \frac{1}{3}\end{array} \right)\]

Um den neuen Punkt \(P'\) zu ermitteln, wird \(12\) mal der Einheitsvektor \(\vec{e}_a\) zum Ortsvektor \(\vec{p}\) des Punkts \(P\) addiert.

\[\vec{p}'=\vec{p}+12\cdot \vec{e}_a=\left(\begin{array}{c} 1 \\ 5 \\ 2 \end{array}\right)+12\cdot \left( \begin{array}{c}\frac{2}{3}\\ \frac{2}{3} \\ \frac{1}{3}\end{array} \right)=\left(\begin{array}{c} 9 \\ 13 \\ 6 \end{array}\right)\]

Damit liegt der Punkt \(P'\) bei \(P'\,(9|13|6)\).

Hast Du Lust, direkt noch ein paar Übungsaufgaben zum Einheitsvektor zu meistern? Dann ab zum nächsten Kapitel!

Einheitsvektor – Aufgaben mit Lösung

Hinweis: Berechnest Du einen Einheitsvektor über die Formel \(\vec{e}_a=\dfrac{1}{|\vec{a}|}\cdot \vec{a}\), dann kannst Du anschließend über den Betrag \(|\vec{e}_a|\) herausfinden, ob die Berechnung korrekt war. Es gilt: \(|\vec{e}_a|=1\).

Vektor normieren – Aufgabe 1

Normiere den Vektor \(\vec{a}\).

\[\vec{a}= \left( \begin{array}{c} 1 \\ 1 \\3 \end{array} \right) \]

Lösung

Zunächst wird die Länge \(|\vec{a}|\) des Vektors \(\vec{a}\) bestimmt.

\[|\vec{a}|=\sqrt{1^2+1^2+3^2}=\sqrt{11}\]

Nach Einsetzen und Ausrechnen erhältst Du für den Einheitsvektor \(\vec{e}_a\):

\[\vec{e}_a=\frac{1}{{\color{#1478C8}|\vec{a}|}}\cdot {\color{#FA3273}\vec{a}}=\frac{1}{{\color{#1478C8}\sqrt{11}}}\cdot {\color{#FA3273}\left( \begin{array}{c} 1\\ 1 \\3 \end{array} \right)}= \left( \begin{array}{c} \frac{1}{\sqrt{11}}\\ \frac{1}{\sqrt{11}} \\ \frac{3}{\sqrt{11}} \end{array} \right)\]

Vektor überprüfen Aufgabe 2

Prüfe, ob es sich bei dem Vektor \(\vec{a}\) um einen normierten Vektor handelt.

\[\vec{a}= \left( \begin{array}{c} -\frac{1}{2} \\ \frac{3}{4} \\ 0 \end{array} \right) \]

Lösung

Zur Überprüfung muss der Betrag des Vektors ermittelt werden.

\[|\vec{a}|=\sqrt{\left( -\frac{1}{2} \right)^2 + \left( \frac{3}{4} \right)^2+0^2}=\sqrt{\frac{1}{4} + \frac{9}{16}+0} = \sqrt{\frac{4+9}{16}}= \frac{13}{16} \neq 1\,\,\,{\color{#FA3273}\times} \]

Dies zeigt, dass es sich beim Vektor \(\vec{a}\) nicht um einen Vektor der Länge \(1\) handelt.

Noch mehr Übungsaufgaben zum Einheitsvektor findest Du in den zugehörigen Karteikarten!

Einheitsvektor – Das Wichtigste

  • Als Einheitsvektor \(\vec{e}\) wird ein Vektor mit der Länge \(1\) bezeichnet: \(|\vec{e}|=1\).
  • Zu jedem Vektor \(\vec{a}\), der kein Nullvektor ist, lässt sich der zugehörige Einheitsvektor \(\vec{e}_a\) (normierter Vektor) bilden.
    • Schreibweisen Einheitsvektor: \(\vec{e}_a\) oder \(\hat{a}\) oder \(\vec{a}^0\)
  • Berechnet wird der zugehörige Einheitsvektor \(\vec{e}_a\) eines Vektors \(\vec{a}\) über die Formel: \[\vec{e}_a=\frac{1}{|\vec{a}|}\cdot \vec{a}\]

Häufig gestellte Fragen zum Thema Einheitsvektor

Als Einheitsvektor wird ein Vektor mit der Länge (dem Betrag) 1 bezeichnet.

Einheitsvektoren (Vektoren mit der Länge 1) werden genutzt, um die Richtung eines Vektors oder einer Koordinatenachse im Koordinatensystem anzuzeigen. Somit können damit auch Strecken abgetragen werden.

Wird der Einheitsvektor zu einem gegebenen Vektor berechnet, so wird zunächst der Betrag des Vektors ermittelt, der Kehrwert gebildet und anschließend mit dem Vektor multipliziert. Das Ergebnis ist der normierte Vektor (Einheitsvektor).

Jeder Vektor, der kein Nullvektor ist, lässt sich mit einer Formel normieren (auf die Länge 1 bringen). Ein normierter Vektor der Länge 1 entspricht also dem Einheitsvektor.

Teste dein Wissen mit Multiple-Choice-Karteikarten

Wähle den passenden Einheitsvektor für die \(y\)-Achse eines dreidimensionalen Koordinatensystems aus.

Überprüfe, ob es sich bei dem Vektor \(\vec{v}\) um einen Einheitsvektor handelt.\[\vec{v}=\left(\begin{array}{c} -1 \\ 1 \\ 0 \end{array}\right)\]

Beurteile, welche Schreibweisen für den normierten Vektor eines Vektors \(\vec{a}\) genutzt werden.

Weiter
Mehr zum Thema Einheitsvektor

Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

  • Karteikarten & Quizze
  • KI-Lernassistent
  • Lernplaner
  • Probeklausuren
  • Intelligente Notizen
Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App! Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

Melde dich an für Notizen & Bearbeitung. 100% for free.

Fang an mit StudySmarter zu lernen, die einzige Lernapp, die du brauchst.

Jetzt kostenlos anmelden
Illustration

Entdecke Lernmaterial in der StudySmarter-App