Login Anmelden

Select your language

Suggested languages for you:
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Gradmaß und Bogenmaß

Gradmaß und Bogenmaß

Bist Du bereit für einen guten Mathematik-Witz?

Ein Mathematiker befindet sich in einem kalten Zimmer. Wo genau im Zimmer stellt er sich hin?

In eine Ecke. Da sind nämlich \(90^\circ\).

Zugegeben, so gut ist der Witz nun doch nicht. Die Ecke hat zwar \(90^\circ\) als Winkel, aber dort wird es vermutlich genauso kalt sein.

Eine Person, die sich genauer mit der Mathematik auskennt, wird den Witz aus einem weiteren Grund schlecht finden: Sie würde nicht von \(90^\circ\) reden, sondern von \(\frac{\pi}{2}\). Das ist derselbe Winkel, allerdings in einem anderen Maß angegeben.

Doch woher kommen diese Angaben „Grad“ und \(\pi\) und was haben sie miteinander zu tun?

Gradmaß und Bogenmaß – Wiederholung der Grundlagen

Das \(\pi\) taucht oft in der Verbindung mit Kreisen auf. Tatsächlich spielt ein besonderer Kreis hier eine Rolle. Der sogenannte Einheitskreis wird in der Mathematik gerade im Zusammenhang mit Winkeln genutzt. Wie er mit Pi zusammenhängt, erfährst Du jetzt.

Zunächst solltest Du Dir ansehen, was genau der Einheitskreis überhaupt ist.

Der Einheitskreis ist ein Kreis mit dem Radius \( r=1\).

Legst Du diesen Kreis mit einer Schnur und rollst sie aus, wirst Du sehen, dass sie genau \(2 \pi\) lang ist, also ungefähr \(\text{6,28}\). Der Einheitskreis hat also einen Umfang von \(2 \pi\).

Gradmaß und Bogenmaß Einheitskreis StudySmarterAbbildung 1: Einheitskreis

Noch mehr Infos dazu bekommst Du in der Erklärung "Einheitskreis".

Gradmaß und Bogenmaß – Definition & Unterschied

Zurück zu den \(90^\circ\) und \(\pi\) – wofür genau stehen sie jetzt und welchen Zusammenhang haben sie?

Um einen Winkel zu beschreiben, gibt es zwei Möglichkeiten: das Gradmaß und das Bogenmaß. Beides sind Winkelmaße, mit denen die Größe eines Winkels dargestellt wird. Jeder Winkel besitzt einen Wert im Gradmaß und einen Wert im Bogenmaß.

Um den genauen Zusammenhang zu verstehen, sieh Dir die folgende Abbildung an.

Gradmaß und Bogenmaß Winkel am Einheitskreis StudySmarter

Abbildung 2: Gradmaß und Bogenmaß

Dargestellt ist ein Winkel im Einheitskreis. Das Gradmaß beschreibt hier den Winkel \(\alpha\) in Grad, das Bogenmaß \(x\) ist die entsprechende Länge des Bogens, die der Teil des Kreises hat, der zum entsprechenden Winkel gehört.

Wie Du siehst, hat der Winkel \(\alpha=90^\circ\) das Bogenmaß \(\frac{\pi}{2}\), da er genau ein Viertel des gesamten Kreises mit \(2\pi\) einnimmt. Auf gleiche Weise können andere Winkel sowohl im Gradmaß, als auch im Bogenmaß dargestellt werden.

Doch wie kannst Du vorgehen, wenn Du einen Winkel wie \(\frac{3\pi}{2}\) gegeben hast und ihn in Gradmaß umrechnen sollst, oder einen Winkel wie \(66^\circ\) ins Bogenmaß?

Gradmaß und Bogenmaß berechnen – Formel

Für die Umrechnung vom Gradmaß ins Bogenmaß und umgekehrt gibt es bestimmte Formeln, die Dir ersparen, alle Winkel in einen Einheitskreis einzeichnen zu müssen.

Gradmaß in Bogenmaß umrechnen

Hast Du einen Winkel im Gradmaß gegeben, sieht dieser stets so aus, dass ein Grad-Zeichen (\(^\circ\)) auf eine Zahl folgt. Das Gradmaß besitzt also die Einheit Grad.

Möchtest Du diesen Winkel ins Bogenmaß umrechnen, kann schnell eine Formel dafür hergeleitet werden.

Du weißt bereits, dass ein Kreis mit Vollwinkel \(360^\circ\) ein Bogenmaß von genau \(2\pi\) hat, also

\[360^\circ=2\pi.\]

Wenn Du nun auf beiden Seiten durch die

\(360^\circ\) teilst, weißt Du, welchem Bogenmaß genau \(1^\circ\) im Gradmaß entspricht:

\[1^\circ=\frac{2\pi}{360^\circ}=\frac{\pi}{180^\circ}.\] Um nun für jeden beliebigen Winkel im Gradmaß den entsprechenden Winkel im Bogenmaß zu erhalten, müssen also beide Seiten der Gleichung mit dem entsprechenden Winkel \(\alpha\) multipliziert werden. Als Formel für das Bogenmaß ergibt sich entsprechend Folgendes:

Die Formel für die Umrechnung von Gradmaß \(\alpha\) in Bogenmaß \(x\) lautet \[x=\frac{\alpha}{180^\circ} \cdot \pi.\]

Als Beispiel kannst Du direkt einmal versuchen, den Winkel \(\alpha=66^\circ\) in Bogenmaß umzurechnen.

Gegeben ist der Winkel \(\alpha=66^\circ\) im Gradmaß.

Um ihn in Bogenmaß umzurechnen, setzt Du \(\alpha\) in die entsprechende Formel ein:

\begin{align}x&=\frac{\alpha}{180^\circ} \cdot \pi \\ \\x&=\frac{66^\circ}{180^\circ} \cdot \pi \\[0.1cm]&=\frac{11}{30}\pi \\[0.1cm] &\approx \text{1,15}.\end{align}

Der Winkel im Bogenmaß lautet nun also genau \(\frac{11}{30}\pi\).

Bogenmaß in Gradmaß umrechnen

Umgekehrt kann ebenfalls eine Formel genutzt werden, um Winkel von Bogenmaß in Gradmaß umzurechnen. Dazu wird obige Formel nach \(x\) umgestellt.

Die Formel für die Umrechnung eines Winkels von Bogenmaß x ins Gradmaß \(\alpha\) lautet \[\alpha=\frac{x}{\pi} \cdot 180^\circ.\]

Die Einheit des Bogenmaßes ist der Radiant (rad). Du kannst also hinter das Bogenmaß noch die Einheit schreiben, z. B. \(\frac{3\pi}{2}\) rad.

Auch hier folgt wieder ein Beispiel zur Berechnung bei gegebenem Bogenmaß.

Gegeben ist der Winkel \(x=\frac{3\pi}{2}\) im Bogenmaß.

Um ihn in Gradmaß umzurechnen, setzt Du \(x\) in die entsprechende Formel ein:

\begin{align}\alpha&=\frac{x}{\pi} \cdot 180^\circ \\\\\alpha&=\frac{\frac{3\pi}{2}}{\pi} \cdot 180^\circ \\[0.1cm]&= \frac{3}{2} \cdot 180^\circ \\[0.1cm] &= 270^\circ. \end{align}

Du kannst nun also beide Winkelmaße mithilfe der Formeln ineinander umrechnen.

Gradmaß und Bogenmaß am Taschenrechner

Möchtest Du mit dem Taschenrechner etwas mit Winkeln im Gradmaß oder Bogenmaß ausrechnen, kann die falsche Taschenrechnereinstellung direkt zu einem falschen Ergebnis führen. Gerade bei Berechnungen, die mit trigonometrischen Gleichungen oder Funktionen wie Sinus oder Kosinus zu tun haben, ist es wichtig, auf die richtige Einstellung zu achten.

Die meisten Taschenrechner besitzen eine „Modus“-Taste (oft auch „mode“). Wichtig sind hier zwei Modi. Der Erste heißt meist „deg“, das steht für „degree“, das englische Wort für „Grad“. Dies ist also der Modus für das Gradmaß. Der Zweite ist „rad“, das steht für „Radiant“ und ist damit der Modus für das Bogenmaß.

Gradmaß und Bogenmaß – Tabelle

Damit Du nicht für jeden Winkel die Formeln für die Umrechnung zwischen Gradmaß und Bogenmaß benutzen musst, findest Du hier eine Tabelle mit besonderen Winkelgrößen, die häufiger für Berechnungen benötigt werden.

Winkel im Gradmaß
Winkel im Bogenmaß
\(0^\circ\)
\(0\)
\(30^\circ\)
\[\frac{\pi}{6}\]
\(45^\circ\)
\[\frac{\pi}{4}\]
\(60^\circ\)
\[\frac{\pi}{3}\]
\(90^\circ\)
\[\frac{\pi}{2}\]
\(180^\circ\)
\[\pi\]
\(270^\circ\)
\[\frac{3\pi}{2}\]
\(360^\circ\)
\[2\pi\]

Gradmaß und Bogenmaß – Aufgaben

Hier hast Du die Möglichkeit, zu überprüfen, ob Du das Gelernte zum Gradmaß und Bogenmaß auch anwenden kannst.

Aufgabe 1

Gegeben ist der Winkel \(\alpha\) am Einheitskreis. Gib diesen Winkel ohne Messen im Gradmaß und Bogenmaß an.

Gradmaß und Bogenmaß Aufgabe 1 StudySmarterAbbildung 3: Aufgabe 1

Lösung

Du weißt, dass ein voller Einheitskreis einen Winkel von \(360^\circ\) bzw. \(2\pi\) besitzt. Der Winkel \(\alpha\) nimmt genau ein Achtel des gegebenen Einheitskreises ein. Dementsprechend hat \(\alpha\) auch ein Achtel von \(360^\circ\) bzw. \(2\pi\).

Für das Gradmaß von \(\alpha\) gilt also \[\alpha=\frac{1}{8} \cdot 360^\circ=45^\circ.\]

Für das Bogenmaß von \(\alpha\) gilt \[x=\frac{1}{8} \cdot 2\pi=\frac{\pi}{4}.\]

Aufgabe 2

Rechne die folgenden Gradmaße in Bogenmaß um:

a) \(22^\circ\)

b) \(405^\circ\)

c) \(119^\circ\)

Lösung

Um die Winkel im Bogenmaß zu berechnen, setzt Du die gegebenen Gradmaße in die passende Formel \(x=\frac{\alpha}{180^\circ} \cdot \pi\) ein:

a) \begin{align} x &=\frac{22^\circ}{180^\circ} \cdot \pi \\[0.1cm]&=\frac{11}{90}\pi \\[0.2cm] &\approx \text{0,83}.\end{align}

b) \(405^\circ\) entsprechen im Kreis einem Winkel von \(45^\circ\). Das liegt daran, dass der Winkel \(\alpha\) um genau \(45^\circ\) größer als \(360^\circ\) ist.

Den Wert des Bogenmaßes für den Winkel \(45^\circ\) kannst Du in der Tabelle ablesen. Er ist \(x=\frac{\pi}{4}\).

c) \begin{align} x&=\frac{119^\circ}{180^\circ} \cdot \pi \\[0.2cm]&\approx \text{2,08}.\end{align}

Aufgabe 2

Rechne die folgenden Gradmaße in Bogenmaß um:

a) \[\frac{7 \pi}{9}\]

b) \[\frac{5 \pi}{36}\]

c) \[\frac{\pi}{10}\]

Lösung

Setze die gegebenen Werte in die entsprechende Formel \(\alpha=\frac{x}{\pi} \cdot 180^\circ\) ein:

a) \begin{align}\alpha&=\frac{\frac{7 \pi}{9}}{\pi} \cdot 180^\circ \\[0.1cm]&= \frac{7}{9} \cdot 180^\circ \\[0.2cm] &= 140^\circ. \end{align}

b) \begin{align} \alpha&=\frac{\frac{5\pi}{36}}{\pi} \cdot 180^\circ \\[0.1cm]&= \frac{5}{36} \cdot 180^\circ \\[0.2cm] &= 25^\circ. \end{align}

c) \begin{align} \alpha&=\frac{\frac{ \pi}{10}}{\pi} \cdot 180^\circ \\[0.1cm]&= \frac{1}{10} \cdot 180^\circ \\[0.2cm] &= 18^\circ. \end{align}

Gradmaß und Bogenmaß – Das Wichtigste

  • Um einen Winkel zu beschreiben, gibt es zwei Möglichkeiten: das Gradmaß und das Bogenmaß. Beides sind Winkelmaße, mit denen die Größe eines Winkels dargestellt wird. Jeder Winkel besitzt einen Wert im Gradmaß und einen Wert im Bogenmaß.
  • Hast Du einen Winkel im Gradmaß gegeben, sieht dieser stets so aus, dass ein Grad-Zeichen (\(^\circ\)) auf eine Zahl folgt, z. B. \(45^\circ\).
  • Die Formel für die Umrechnung von Gradmaß in Bogenmaß lautet \(x=\frac{\alpha}{180^\circ} \cdot \pi.\)
  • Die Einheit des Bogenmaßes ist der Radiant (rad), z. B. kann ein Winkel im Bogenmaß so aussehen: \(\frac{3\pi}{2}\) rad.
  • Die Formel für die Umrechnung von Bogenmaß ins Gradmaß lautet \(\alpha=\frac{x}{\pi} \cdot 180^\circ.\)

Nachweise

  1. Richter (2008). Grundwissen Mathematik für Ingenieure. Vieweg+Teubner-Verlag.

Häufig gestellte Fragen zum Thema Gradmaß und Bogenmaß

Um einen Winkel zu beschreiben, gibt es zwei Möglichkeiten: das Gradmaß und das Bogenmaß. Beides sind Winkelmaße, mit denen die Größe eines Winkels dargestellt wird. Jeder Winkel besitzt einen Wert im Gradmaß und einen Wert im Bogenmaß.

Um die Größe von Winkeln zu beschreiben, können sowohl das Bogenmaß als auch das Gradmaß verwendet werden. Rechnest Du mit trigonometrischen Gleichungen oder Funktionen wie z. B. dem Sinus oder Kosinus, wird meist das Bogenmaß verwendet.

Das Gradmaß beschreibt die Größe eines bestimmten Winkels in Grad. Das Bogenmaß beschreibt die Länge des zugehörigen Kreisbogens zu diesem Winkel. Jeder Winkel kann im Gradmaß und im Bogenmaß beschrieben werden.

Hast Du einen Winkel α im Gradmaß gegeben, kannst Du ihn im Bogenmaß ausrechnen, indem Du ihn durch 180° teilst und dann mit Pi multiplizierst: x = (α : 180°) · π

Finales Gradmaß und Bogenmaß Quiz

Frage

Erkläre, was der Einheitskreis ist.

Antwort anzeigen

Antwort

Der Einheitskreis ist der Kreis mit einem Radius von 1. Die Längeneinheit spielt hierbei keine Rolle.

Frage anzeigen

Frage

Wie lautet die Einheit des Bogenmaßes?

Antwort anzeigen

Antwort

Die Einheit des Bogenmaßes ist der Radiant. Angegeben wird die Einheit durch das Kürzel "rad".

Frage anzeigen

Frage

Entscheide, auf welchen Modus Du deinen Taschenrechner stellen musst, wenn Du im Bogenmaß rechnen willst.

Antwort anzeigen

Antwort

deg

Frage anzeigen

Frage

Bestimme, ohne Formeln zu verwenden, welchen Wert \(360^\circ\) im Bogenmaß hat.

Antwort anzeigen

Antwort

360° entsprechen einem vollen Kreis. Der Umfang eines Einheitskreises ist \(2\pi\). Damit hat der Vollwinkel im Bogenmaß den Wert \(2\pi\) rad.

Frage anzeigen

Frage

Berechne den Wert des Bogenmaßes vom Winkel \(120^\circ\).

Antwort anzeigen

Antwort

Hierfür nutzt Du die entsprechende Formel und erhältst

\begin{align}x&=\frac{\alpha}{180^\circ} \cdot \pi \\[0.1cm] &=\frac{120^\circ}{180^\circ} \cdot \pi \\[0.1cm] &=\frac{2}{3} \cdot \pi \\[0.1cm]&\approx 2,09\, \text{rad}.\end{align}

Frage anzeigen

Frage

Berechne den Wert des Gradmaßes vom Winkel \(\frac{3\pi}{4}\).

Antwort anzeigen

Antwort

Du setzt den gegebenen Wert in die entsprechende Formel ein und erhältst

\begin{align}\alpha&=\frac{x}{\pi} \cdot 180^\circ \\[0.1cm]&=\frac{\frac{ 3\pi}{4}}{\pi} \cdot 180^\circ \\[0.1cm]&= \frac{3}{4} \cdot 180^\circ \\[0.1cm] &= 135^\circ. \end{align}

Frage anzeigen

Frage

Bewerte folgende Aussage:


Die Einheit des Bogenmaßes ist Grad.

Antwort anzeigen

Antwort

Das ist falsch. Die Einheit des Bogenmaßes ist der Radiant, kurz „rad“.

Frage anzeigen

Frage

Gegeben ist ein Winkel im Gradmaß. Beschreibe, wie Du denselben Winkel im Bogenmaß bestimmen kannst.

Antwort anzeigen

Antwort

Um vom Gradmaß ins Bogenmaß umzurechnen, verwendest Du die Formel \[x=\frac{\alpha}{180^\circ} \cdot \pi.\]

Den gegebenen Winkel setzt Du dann für \(\alpha\) in die Formel ein.

Frage anzeigen

Frage

Beschreibe, wie Du einen gegebenen Winkel im Bogenmaß zum selben Winkel im Gradmaß umrechnen kannst.

Antwort anzeigen

Antwort

Für die Umrechnung von Bogenmaß zu Gradmaß setzt Du den gegebenen Winkel für \(x\) in die Formel \[\alpha=\frac{x}{\pi} \cdot 180^\circ.\]

ein.

Frage anzeigen

Frage

Gegeben ist der Winkel \(50^\circ\) im Gradmaß. Bestimme das entsprechende Bogenmaß.

Antwort anzeigen

Antwort

Um den Winkel in Bogenmaß umzurechnen, setzt Du \(\alpha\) in die entsprechende Formel ein: \begin{align}x&=\frac{\alpha}{180^\circ} \cdot \pi \\[0.1cm] &=\frac{50^\circ}{180^\circ} \cdot \pi \\[0.1cm]&=\frac{5}{36}\pi \\[0.1cm] &\approx 0,44.\end{align}

Frage anzeigen

Frage

Du hast den Winkel \(\frac{12\pi}{11}\) im Bogenmaß gegeben. Bestimme denselben Winkel im Gradmaß.

Antwort anzeigen

Antwort

Um den Winkel in Gradmaß umzurechnen, setzt Du \(x\) in die entsprechende Formel ein: \begin{align}\alpha&=\frac{x}{\pi} \cdot 180^\circ \\[0.1cm]&=\frac{\frac{12\pi}{11}}{\pi} \cdot 180^\circ \\[0.1cm]&= \frac{12}{11} \cdot 180^\circ \\[0.1cm] &= 196,36^\circ. \end{align}

Frage anzeigen

Frage

Berechne den Winkel \(180^\circ\) im Bogenmaß, ohne die Formel zu benutzen.

Antwort anzeigen

Antwort

\(180^\circ\) sind genau die Hälfte eines Vollwinkels mit \(360^\circ\). Der Einheitskreis hat für den vollen Kreis eine Bogenlänge von \(2\pi\), demnach entsprechen \(180^\circ\) einem halben Vollwinkel im Bogenmaß. Das ist dann \(\pi\).

Frage anzeigen

Frage

Berechne den Winkel \(168^\circ\) im Bogenmaß.

Antwort anzeigen

Antwort

Hierfür nutzt Du die entsprechende Formel und erhältst

\begin{align}x&=\frac{\alpha}{180^\circ} \cdot \pi \\[0.1cm]&=\frac{168^\circ}{180^\circ} \cdot \pi \\[0.1cm] &=\frac{42}{45} \cdot \pi \\[0.1cm]&\approx 2,93\, \text{rad}.\end{align}

Frage anzeigen

Frage

Berechne den Wert des Gradmaßes vom Winkel \(\frac{\pi}{12}\).

Antwort anzeigen

Antwort

Du setzt den gegebenen Wert in die entsprechende Formel ein und erhältst

\begin{align}\alpha&=\frac{x}{\pi} \cdot 180^\circ \\[0.1cm]&=\frac{\frac{\pi}{12}}{\pi} \cdot 180^\circ \\[0.1cm]&= \frac{1}{12} \cdot 180^\circ \\[0.1cm] &= 15^\circ. \end{align}

Frage anzeigen

Mehr zum Thema Gradmaß und Bogenmaß
60%

der Nutzer schaffen das Gradmaß und Bogenmaß Quiz nicht! Kannst du es schaffen?

Quiz starten

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Melde dich an für Notizen & Bearbeitung. 100% for free.

Get FREE ACCESS to all of our study material, tailor-made!

Over 10 million students from across the world are already learning smarter.

Get Started for Free
Illustration