Select your language

Suggested languages for you:
Log In Anmelden
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Die All-in-one Lernapp:

  • Karteikarten
  • NotizenNotes
  • ErklärungenExplanations
  • Lernpläne
  • Übungen
App nutzen

Umfang Drachenviereck

Save Speichern
Print Drucken
Edit Bearbeiten
Melde dich an und nutze alle Funktionen. Jetzt anmelden
Mathe

Du bist ein großer Fan davon, in den Herbstferien Deinen Drachen steigen zu lassen? Wäre es nicht eine tolle Idee, den Rand des Drachens mit LED Lichtern zu bestücken, sodass Du ihn auch nachts im Himmel leuchten siehst? Doch wie viele Meter an LED Lichtern würdest Du dafür benötigen?

Umfang Drachenviereck Drache StudySmarter

Das Drachenviereck – Wiederholung

Das Drachenviereck ist eine wichtige Figur der Geometrie. Drachenvierecke sind Vierecke mit besonderen Eigenschaften.

Das Drachenviereck gehört der Gruppe der Vierecke an und weist insgesamt vier Seiten auf, wobei jeweils zwei aneinander angrenzende Seiten gleich lang sind. Ein weiteres wichtiges Merkmal des Drachenvierecks ist, dass jene Diagonale, welche von oben nach unten verläuft, zugleich die Symmetrieachse der Figur darstellt.

Visuell dargestellt und vollständig beschriftet, sieht ein Drachenviereck wie folgt aus:

Umfang Drachenviereck Drachenviereck StudySmarterAbbildung 2: Drachenviereck

Hier eine kurze Übersicht einiger ähnlicher Vierecke, um das Drachenviereck von anderen Vierecken unterscheiden zu können.

Umfang Drachenviereck Raute StudySmarterAbbildung 3: Die Raute Umfang Drachenviereck Drachenviereck StudySmarterAbbildung 4: Das Drachenviereck

Umfang Drachenviereck Quadrat StudySmarterAbbildung 5: Das QuadratUmfang Drachenviereck Rechteck StudySmarterAbbildung 6: Das Rechteck

Merke:

- Beim Rechteck sind alle Winkel immer zwingend 90° groß. Beim Drachenviereck sind diese beliebig groß!

- Die Seiten werden mit Buchstaben beschriftet, wobei jeder Buchstabe für einen konkreten Wert steht. Gleich lange Seiten haben also dieselben Beschriftungen.

Der Umfang eines Drachenvierecks

In den folgenden Abschnitten wird erklärt, was genau der Umfang ist, wozu Du diesen benötigt und wie Du den Umfang eines Drachenvierecks ausrechnen kannst.

Der Umfang – Herleitung

Du musst in einer Hausaufgabe den Umfang eines Drachenvierecks berechnen, jedoch kannst Du Dich nicht erinnern, was dieser genau ist? Im Folgenden findest Du Hilfestellung dazu.

Unter dem Umfang versteht man die Länge des Randes einer zweidimensionalen Figur. Dieser wird in der Mathematik immer mit einem großen "U" bezeichnet.

Im diesem Beispiel wird die Formel zur Berechnung dieses Umfangs hergeleitet.

Aufgabe 1

Nimm ein kariertes Rechenheft zur Hand und schlage eine beliebige leere Seite auf. Hier siehst Du zahlreiche Kästchen. Du stellst Dir jetzt folgende Frage:

Wie lang ist der gesamte Rand eines Drachenvierecks, dessen Seiten folgende Werte aufweisen?

Umfang Drachenviereck Skizze StudySmarterAbbildung 7: Skizze

Lösung

Für die Berechnung des Drachenvierecks musst Du die vier Seiten zusammenzählen:

Umfang Drachenviereck Umfangsformel StudySmarter

Um dieses Beispiel zu lösen, müssen die angegebenen Werte anstelle der Variablen und in die Formel eingesetzt werden.

Umfang Drachenviereck Umfangsformel StudySmarter

Der Umfang des Drachenvierecks beträgt also .

Im nächsten Abschnitt lernst Du, was der Umfang ist und wie Du diesen berechnen kannst.

Umfang eines Drachenvierecks – Formel

Für jede geometrische Figur gibt es für die Berechnung des Umfangs eine Formel.

Der Umfang eines Drachenvierecks mit der Seitenlängen , und den Diagonalen , wird wie folgt berechnet:

Umfang Raute Umfangsformel StudySmarter

Die Diagonale wird im Drachendreieck in zwei Strecken, nämlich und unterteilt. Die Strecke ist dabei die Linie vom Schnittpunkt der Diagonalen hin zur Spitze der Figur. hingegen ist jene Strecke vom Schnittpunkt der Diagonalen hin zum tiefsten Punkt der Figur.

Um dies besser veranschaulichen zu können, wird folgende Abbildung verwendet:

Umfang Drachenviereck Drachenviereck StudySmarterAbbildung 8: Drachenviereck

Nun kannst Du die Umfangsformel an diesem Beispiel anwenden:

Aufgabe 2


Gegeben sind folgende Werte eines Drachenvierecks:

Berechne den Umfang U der Figur.

Lösung

Da in diesem Beispiel bereits alle für den Umfang relevanten Variablen einen Wert aufweisen, wird keine Skizze benötigt und die Werte können direkt in die Umfangsformel eingesetzt werden.

Umfang Drachenviereck Beispiel StudySmarter

Der Umfang des Drachenvierecks beträgt also .

Mithilfe des Umfangs kannst Du verschiedene andere Variablen, Seiten oder Diagonalen berechnen.

Rechnen mit dem Umfang eines Drachenvierecks

Sollte der Umfang bei Übungsaufgaben gegeben sein, kann man mithilfe dessen, die Seiten und im Anschluss auch die Diagonalen des Drachenvierecks berechnen.

Drachenviereck – Berechnung einer Seite mit dem Umfang

Besteht eine Aufgabe darin, eine der beiden Seiten bei gegebenem Umfang und der anderen Seite zu berechnen, wird wie folgt vorgegangen:

  • Schreibe die Umfangsformel für das Drachenviereck auf.
  • Stelle diese nach der gesuchten Seitenlänge frei.
  • Setze die Werte aus der Angabe in die Formel ein.
  • Berechne die fehlende Seitenlänge, indem Du die Gleichung löst.

Anhand eines konkreten Beispiels sieht dies Schritt für Schritt wie folgt aus:

Aufgabe 3

Berechne die Seite einer Figur, welche einen Umfang von und eine Seite a von aufweist!

Lösung

Rechenschritt
Rechnung
Schritt 1: Umfangsformel für das Drachenviereck hinschreibenUmfang Drachenviereck Umfangsformel StudySmarter
Schritt 2: Stelle diese nach der Seite b frei
Schritt 3: Wert für den Umfang einsetzen
Schritt 4: Gleichung lösen

Somit beträgt die Lösung dieser Aufgabe .

Der Umfang kann auch berechnet werden, falls die Diagonale e, eine Teilstrecke der Diagonale f und eine der Seiten gegeben ist.

Umfang U eines Drachenvierecks mit dem Satz des Pythagoras berechnen

Befindest Du Dich bereits in der neunten Klasse oder höher, dann wird Dir der Deep Dive weiterhelfen. Ansonsten kannst Du diesen überspringen und direkt zu den weiteren Beispielen übergehen.

Grundsätzlich gibt es zwei Möglichkeiten, den Umfang zu berechnen:

1) Bei folgenden gegebenen Werten: b, y, e

2) Bei folgenden gegebenen Werten: a, x, e

Folgendes Beispiel zeigt den ersten Fall, also wie mithilfe der Teilstrecke y, der Seite b und der Diagonale e die Seite a berechnet werden kann, welche für die Berechnung des Umfangs benötigt wird.

Für Methode 2 wird genau gleich vorgegangen, nur dass hierfür die Werte des Satzes des Pythagoras x anstelle von y und a anstelle von b verwendet werden.

Aufgabe 4

Berechne den Umfang U eines Drachenvierecks mit den folgenden Werten.

Lösung

Um diese Aufgabe zu lösen, musst Du als Erstes erneut eine Skizze anfertigen und versuchen herauszufinden, mit welcher Formel die Diagonale f berechnet werden kann.

Umfang Drachenviereck Satz des Pythagoras StudySmarterAbbildung 9: Satz des Pythagoras

Da die Seite a berechnet werden muss, wird hier der Lehrsatz nach Pythagoras im hier markierten rechtwinkligen Dreieck angewendet. Dieser lautet wie folgt:

Umfang Drachenviereck Pythagoras StudySmarter

Unter und werden die kürzeren Seiten im rechtwinkligen Dreieck, welches in Abbildung 10 dargestellt wird, verstanden. Die Strecke y wird in dieser Formel als bezeichnet. Hingegen steht die Hälfte der Diagonale e, also , stellvertretend für K2. Die Seite a stellt die Hypotenuse H, also die längere und vom rechten Winkel gegenüberliegende Seite, dar.

Umfang Drachenviereck Satz des Pythagoras StudySmarterAbbildung 10: Satz des Pythagoras

Werden nun die Werte bzw. Buchstaben in die Formel eingesetzt und die Gleichung nach a aufgelöst, sieht dies wie folgt aus:

Umfang Drachenviereck Beispiel StudySmarter

Nun können die Werte für die Seite a und die Seite b in die Umfangsformel eingesetzt werden.

Somit beträgt der Umfang des Drachenvierecks 24,72 Meter.

Umfang Drachenviereck – Übungsaufgaben

Mithilfe der folgenden Übungsbeispiele kannst Du den Umfang eines Drachenvierecks berechnen.

Aufgabe 5

Gegeben sind folgende Werte eines Drachenvierecks:

Berechne den Umfang U der Figur.

Lösung

Da in diesem Beispiel bereits alle für den Umfang relevanten Variablen einen Wert aufweisen, wird keine Skizze benötigt und die Werte können direkt in die Umfangsformel eingesetzt werden.

Umfang Drachenviereck Beispiel StudySmarter

Der Umfang des Drachenvierecks beträgt also .

Auf geht's zur nächsten Aufgabe:

Aufgabe 6

In einem Drachenviereck weist die Seite b eine Länge von 6 cm auf, wobei die Seite a dreimal so lang ist. Berechne den Umfang der Figur!

Lösung

Da es sich bei dieser Aufgabe um eine Verständnisaufgabe handelt, wird eine Skizze benötigt. Dadurch erhältst Du einen besseren Überblick über den Sachverhalt.

Umfang Drachenviereck Skizze StudySmarterAbbildung 11: Skizze

Als Erstes berechnest Du die Seite a, indem Du den Wert der Seite b mit drei multiplizierst.

Umfang Drachenviereck Beispiel StudySmarter

Nun kennst Du alle für den Umfang relevanten Werte und kannst diese direkt in die Umfangsformel einsetzen.

Der Umfang des Drachenvierecks beträgt also .

Aufgabe 7


Gegeben sind folgende Werte eines Drachenvierecks:

Berechne den Umfang U der Figur.

Lösung

Da in diesem Beispiel bereits alle für den Umfang relevanten Variablen einen Wert aufweisen, wird keine Skizze benötigt und es können die Werte direkt in die Umfangsformel eingesetzt werden.

Umfang Drachenviereck Beispiel StudySmarter

Der Umfang des Drachenvierecks beträgt also .

Umfang Drachenviereck – Das Wichtigste

  • Ein Viereck erkennst Du daran, dass es vier Winkel, vier Ecken und vier Seiten aufweist.

  • Jeweils zwei angrenzende Seiten des Drachenvierecks sind immer gleich lang, wobei die Diagonalen unterschiedlich lang sind.

  • Beim Drachenviereck im Gegensatz zum Rechteck alle vier Winkel beliebig groß sein können und die jeweils aneinandergrenzenden Seiten gleich lang sind.

  • Die Umfangsformel des Drachenvierecks lautet: Umfang Drachenviereck Umfangsformel StudySmarter

  • Die Seitenformeln lauten: Umfang Drachenviereck Seitenformel StudySmarter

  • Die Diagonale f besteht aus den Strecken x und y.

  • Die Diagonale f kann ermittelt werden.....

    • Bei gegebenem Flächeninhalt und einer gegebenen Diagonale oder
    • bei gegebener Seitenlänge b, der Strecke y und der Diagonale e
    • bei gegebener Seitenlänge a, der Strecke x und der Diagonale e.

Umfang Drachenviereck

Mithilfe der Umfangsformel U = 2 · a + 2 · b

60%

der Nutzer schaffen das Umfang Drachenviereck Quiz nicht! Kannst du es schaffen?

Quiz starten

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Melde dich an für Notizen & Bearbeitung. 100% for free.