• :00Tage
  • :00Std
  • :00Min
  • 00Sek
Ein neues Zeitalter des Lernens steht bevorKostenlos anmelden
Login Anmelden

Select your language

Suggested languages for you:
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Identische Geraden

Du hast bestimmt schon mal eine Aufgabe gerechnet, in der dann zwei Geraden vorkamen, die genau die gleiche Gleichung hatten und in der Zeichnung direkt übereinander lagen. Diese Art von Geraden nennt man identische Geraden. Aber was genau sind identische Geraden? Und wie erkennt man sie?Wenn Geraden identisch sind, dann beschreibt das deren Lagebeziehung im Raum. Identische Geraden sind ein…

Von Expert*innen geprüfte Inhalte
Kostenlose StudySmarter App mit über 20 Millionen Studierenden
Mockup Schule

Entdecke über 200 Millionen kostenlose Materialien in unserer App

Identische Geraden

Identische Geraden
Illustration

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmelden

Nie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmelden
Illustration

Du hast bestimmt schon mal eine Aufgabe gerechnet, in der dann zwei Geraden vorkamen, die genau die gleiche Gleichung hatten und in der Zeichnung direkt übereinander lagen. Diese Art von Geraden nennt man identische Geraden. Aber was genau sind identische Geraden? Und wie erkennt man sie?

Identische Geraden – Definition

Wenn Geraden identisch sind, dann beschreibt das deren Lagebeziehung im Raum. Identische Geraden sind ein Spezialfall der parallelen Geraden. Ihr Abstand beträgt an jeder Stelle 0. Aufgrund dessen werden sie auch als deckungsgleich bezeichnet. Es sind also eigentlich die gleichen Geraden.

Wie du weißt, lautet die allgemeine Geradengleichung y = mx + t. Diese Geradengleichung ist immer eindeutig, was bedeutet, dass es genau eine passende Gerade zu dieser Geradengleichung gibt. Durch Umformungen, also zum Beispiel ausmultiplizieren, können zwei lineare Funktionen auf den ersten Blick komplett unterschiedlich aussehen, aber eigentlich dieselbe Gleichung haben. Ist das der Fall, dann sind diese beiden Geraden identisch.

Identisch werden Geraden genannt, deren Funktionsgleichung durch Äquivalenzumformungen auf dieselbe Gleichung gebracht werden können.

Um zu zeigen, dass zwei Geraden identisch sind, wird dieses Zeichen verwendet: =

Man schreibt also für zwei identische Geraden g und f:

g = f

Parallele Geraden sind Geraden, die in jedem Punkt den gleichen Abstand zueinander haben, genauso wie identische Geraden. Jedoch haben sie einen Abstand, der größer als 0 ist. Der Sonderfall paralleler Geraden ist demnach, wenn ihr Abstand in allen Punkten 0 beträgt, denn dann sind es identische Geraden.

Gezeichnet sehen parallele Geraden dann so aus:

Identische Geraden, Parallele Geraden Definition, StudySmarter

Abbildung 1: Parallele Geraden

Parallele Geraden werden mit folgendem Zeichen abgekürzt: ||

Parallel werden zwei Geraden genannt, für die gilt:

m1 = m2 und t1 t2

Eine weitere Lagebeziehung von Geraden im Raum sind sich schneidende Geraden. Sie können sich beliebig oder im Spezialfall im rechten Winkel schneiden – dann stehen sie senkrecht aufeinander.

Identische Geraden erkennen

Jetzt fragst du dich vielleicht, wie du zwei identische Geraden erkennen kannst. Du hast dazu zwei Möglichkeiten: die rechnerische Überprüfung und die zeichnerische Überprüfung.

Rechnerische Ermittlung identischer Geraden

Wenn du eine Geradengleichung gegeben hast, kannst du identische Geraden mithilfe der Steigung und des y-Achsenabschnittspunktes erkennen. Bei identischen Geraden sind diese beiden Faktoren gleich. Es gilt also:

Für identische Geraden gilt:

m1 = m2 und t1 = t2

Schauen wir uns diese Regel doch mal anhand von einem Beispiel an:

Aufgabe 1

Wie liegen die Geradeg(x) = 0,5x + 1, 5undf(x) = 12x + 32zueinander?

Lösung

Die Geradengleichungen haben immer die Formy = mx + t. Damit kannst du jetzt die Werte der Steigung und der y-Achsenabschnittspunkte ablesen.

m1 = 0,5m2 = 12t1 = 1,5t2 = 32

Als Nächstes kannst du diese Werte in die Formeln von oben einsetzten und überlegen, ob diese Aussagen zutreffen.

m1 = m20,5 = 12 t1 = t21,5 = 32

Die Geraden g und f sind identisch, da sowohl ihre Steigung, als auch ihr y-Achsenabschnittspunkt gleich ist.

Identische Geraden Beispiel StudySmarterAbbildung 2: Identische Geraden Beispiel

Grafische Überprüfung identischer Geraden

Wenn du die Geradengleichung gegeben hast, kannst du die Geraden anschließend noch zeichnen. Dann siehst du auch, ob sie identisch sind oder nicht. Das ist dann zwar mehr Arbeit, aber zum einen anschaulicher und zum anderen übst du dann gleich noch das Zeichnen von Geraden. Außerdem ist es oft, besonders in mehrteiligen Aufgaben, hilfreich eine Zeichnung anzufertigen, um sein Ergebnis nochmal zu überprüfen und andere Teilaufgaben vielleicht einfacher lösen zu können.

Wenn zwei Geraden identisch sind, bedeutet das, dass jeder Punkt der einen Geraden auch ein Punkt der anderen Geraden ist. Es existieren also unendlich viele gemeinsame Punkte. In der Praxis liegen die zwei Geraden genau übereinander und sehen aus, wie eine Gerade. Es ist die gleiche Gerade zweimal übereinander gezeichnet.

In einer Zeichnung sieht das dann so aus:

Identische Geraden Beispiel StudySmarterAbbildung 3: Identische Geraden Beispiel

Schauen wir uns das doch mal anhand von einem Beispiel an.

Aufgabe 2

Wie liegen die Geradeng(x) = 1 + 2 · 3x + 4undf(x) = 2 + 3 + 12x2zueinander? Prüfe dein Ergebnis!

Lösung

Um diese Geraden zeichnen zu können, musst du sie erst einmal zusammenfassen, sodass sie in der Form y = mx + t vorliegen.

g(x) = 1 + 2 · 3x + 4g(x) = 1 + 6x + 4g(x) = 5 + 6xg(x) = 6x + 5 f(x) = 2 + 3 + 12x2f(x) = 5 + 122xf(x) = 5 + 6xf(x) = 6x + 5

Jetzt kannst du, wie oben, die Steigungen und die y-Achsenabschnittspunkte vergleichen.

m1 = m26 = 6 t1 = t25 = 5

Nach diesem Verfahren sind die Geraden also identisch.Da wir das Ergebnis noch prüfen sollen, können wir die beiden Geraden noch zeichnen. Denke daran, eine Steigung von 5 kann auch so geschrieben werden: m = 51.

Der y-Achsenabschnittspunkt ist der Punkt, an dem die Gerade die y-Achse schneidet (0|t).

Der Nenner der Steigung ist der x-Wert, während der Zähler der y-Wert ist m = ΔyΔx

Identische Geraden, identische Geraden prüfen, StudySmarter

Abbildung 4: Identische Geraden prüfen

Wie du siehst, liegen beide Geraden übereinander, was bedeutet, dass sie identisch sind.

Natürlich funktioniert dieses Verfahren auch umgekehrt: Du hast eine Zeichnung gegeben und kannst dann die Geradengleichungen aufstellen. Da es aber in einer Zeichnung sofort ersichtlich ist, wenn zwei Geraden identisch sind, ist das hier nicht unbedingt nötig.

Identische Geraden – Aufgaben

Jetzt folgen ein paar Aufgaben, mit denen du dein Wissen testen kannst!

Aufgabe 3

Welchen Wert muss c annehmen, sodass die Geradeng(x) = 42 - 3 · 2 + 4x · 12 und f(x) = x · 84 + 3 · 2 + cidentisch sind? Prüfe dein Ergebnis!

Lösung

Zuerst kannst du die Gleichungen vereinfachen, sodass du dann die Steigung und den y-Achsenabschnittspunkt schneller erkennen kannst. Hier gilt wie immer, Punkt vor Strich.

g(x) = 42 - 3 · 2 + 4x · 12g(x) = 42 - 3 · 2 + 2xg(x) = 2 - 3 · 2 + 2xg(x) = -1 · 2 + 2xg(x) = 2x - 2 f(x) = x · 84 + 3 · 2 + cf(x) = 2x + 3 · 2 + cf(x) = 2x + 6 +c

Jetzt kannst du die Steigungen vergleichen.

m1 = 2m2 = 2m1 = m22 = 2

Bei den y-Achsenabschnittspunkten musst du jetzt ausfindig machen, wie groß t sein darf. Dafür setzt du deine Werte wie sonst auch in die Formel ein und löst dann einfach nach c auf.

t1 = -2t2 = 6 + ct1 = t2-2 = 6 + c |-6-2 - 6 = c-8 = c

Als Nächstes kannst du nochmal deinen Wert für c prüfen.

t1 = t2-2 = 6 + (-8)-2 = 6 - 8-2 = -2

Zum Schluss kannst du nun die Geraden zeichnen, um wirklich sicherzugehen, dass sie identisch sind. Die Formeln lauten jetzt:

g(x) = 2x - 2 und f(x) = 2x - 2

Identische Geraden, identische Geraden Beispiel, StudySmarter

Abbildung 5: Beispiel Identische Geraden

Identische Geraden - Das Wichtigste

  • identische Geraden sind Geraden, die in jedem Punkt den Abstand 0 zueinander haben
  • identische Geraden f und g werden durchf=gausgedrückt
  • Bei identischen Geraden ist die Steigung und der y-Achsenabschnittspunkt gleich
  • identische Geraden liegen in einer Zeichnung genau übereinander
  • Du kannst dein Ergebnis jeweils mit der anderen Methode zum Erkennen einer identischen Geraden prüfen

Häufig gestellte Fragen zum Thema Identische Geraden

Zwei Geraden sind dann identisch, wenn sie in jedem Punkt den Abstand 0 besitzen. Sie liegen also direkt aufeinander, was auch bedeutet, dass sie die gleiche Steigung m und den gleichen y-Achsenabschnittspunkt t besitzen. Allgemein kann man es so formulieren:

Identisch werden Geraden genannt, deren Funktionsgleichung durch Äquivalenzumformungen auf dieselbe Gleichung gebracht werden können.

Identische Geraden haben unendlich viele Schnittpunkte, da jeder Punkt der einen Gerade auch ein Punkt der anderen Gerade ist.

Finales Identische Geraden Quiz

Identische Geraden Quiz - Teste dein Wissen

Frage

Was sind identische Geraden?

Antwort anzeigen

Antwort

Geraden, die unendlich viele gemeinsame Punkte haben

Frage anzeigen

Frage

Wie werden identische Geraden abgekürzt?

Antwort anzeigen

Antwort

Mit einem = Zeichen. Für zwei identische Geraden g und f gilt also:

g = f

Frage anzeigen

Frage

Wie kannst du identische Geraden anhand einer Zeichnung erkennen?

Antwort anzeigen

Antwort

Identische Geraden liegen aufeinander. Es ist also zweimal die gleiche Gerade.

Frage anzeigen

Frage

Was ist der Unterschied zwischen parallelen und identischen Geraden?

Antwort anzeigen

Antwort

Parallele Geraden haben die gleiche Steigung m, aber nicht den gleichen y-Achsenabschnittspunkt t. Sie haben einen Abstand, der größer als 0 ist.

Identische Geraden haben die gleiche Steigung m und den gleichen y-Achsenabschnittspunkt t. Sie haben in jedem Punkt den Abstand 0.

Frage anzeigen

Frage

Bewerte folgende Aussage:


Wenn zwei Geraden identisch sind, sind sie immer auch parallel.

Antwort anzeigen

Antwort

Richtig

Frage anzeigen

Frage

Bewerte folgende Aussage:


Wenn zwei Geraden parallel sind, sind sie immer auch identisch.

Antwort anzeigen

Antwort

Richtig

Frage anzeigen

Mehr zum Thema Identische Geraden
60%

der Nutzer schaffen das Identische Geraden Quiz nicht! Kannst du es schaffen?

Quiz starten

Wie möchtest du den Inhalt lernen?

Karteikarten erstellen
Inhalte meiner Freund:innen lernen
Ein Quiz machen

94% der StudySmarter Nutzer erzielen bessere Noten.

Jetzt anmelden

94% der StudySmarter Nutzer erzielen bessere Noten.

Jetzt anmelden

Wie möchtest du den Inhalt lernen?

Karteikarten erstellen
Inhalte meiner Freund:innen lernen
Ein Quiz machen

Kostenloser mathe Spickzettel

Alles was du zu . wissen musst. Perfekt zusammengefasst, sodass du es dir leicht merken kannst!

Jetzt anmelden

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Melde dich an für Notizen & Bearbeitung. 100% for free.

Fang an mit StudySmarter zu lernen, die einzige Lernapp, die du brauchst.

Jetzt kostenlos anmelden
Illustration