StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
Americas
Europe
Winkel findest Du, wenn zwei Geraden sich schneiden, zwei Strahlen vom selben Punkt ausgehen oder in geometrischen Figuren. Dort können verschiedene Arten von Neigungen entstehen, die unterschiedlich beschrieben werden. In fast jedem Teilgebiet der Mathematik kommen Winkel vor. Daher begleiten sie Dich bis zu Deinem Schulabschluss. In diesem Artikel wird näher auf die verschiedenen Winkelarten, und wie Du sie erkennen kannst,…
Entdecke über 200 Millionen kostenlose Materialien in unserer App
Speicher die Erklärung jetzt ab und lies sie, wenn Du Zeit hast.
SpeichernLerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenWinkel findest Du, wenn zwei Geraden sich schneiden, zwei Strahlen vom selben Punkt ausgehen oder in geometrischen Figuren. Dort können verschiedene Arten von Neigungen entstehen, die unterschiedlich beschrieben werden.
In fast jedem Teilgebiet der Mathematik kommen Winkel vor. Daher begleiten sie Dich bis zu Deinem Schulabschluss. In diesem Artikel wird näher auf die verschiedenen Winkelarten, und wie Du sie erkennen kannst, eingegangen.
Bevor Du die verschiedenen Winkelarten kennenlernst, wird erst wiederholt, aus welchen Parametern ein Winkel besteht.
Schneiden sich zwei Geraden g und h an einem Punkt, so wird dieser Punkt Schnittpunkt S der Geraden g und h genannt. Die beiden Geraden spannen dabei in ihrem Schnittpunkt den Winkel α auf. Dieser Winkel α kann entweder im Gradmaß oder im Bogenmaß angegeben werden.
Abbildung 1: Parameter Winkel
Diese Abbildung ist ein Beispiel für einen Einzelwinkel. Schneiden sich zwei oder drei Geraden, dann entstehen auch Winkel, die jeweils eine bestimmte Beziehung zueinander haben. Geht es demnach um die Beziehung von zwei Winkeln, redet man von Winkelpaaren.
Durch die unterschiedliche Neigung der Strahlen oder Geraden entsteht eine Reihe von verschiedenen Winkelarten. Diese werden basierend auf dem Grad ihrer Neigung in eine von sieben Kategorien eingeteilt.
Der Nullwinkel besitzt, wie der Name vermuten lässt, einen Winkel von 0 Grad. Im Prinzip kannst Du hier gar keinen Winkel erkennen, da die beiden Schenkel direkt übereinander liegen.
Für Nullwinkel gilt:
Abbildung 2: Nullwinkel
Zur Erinnerung: Schenkel sind zwei Geraden, die zusammen einen Winkel bilden.
Der spitze Winkel ist ein Winkel zwischen 0 und 90 Grad und wird aufgrund der Neigung und seines Aussehens als spitz bezeichnet. Der Winkel ist größer als 0 Grad. Es ist also nicht nur ein Strich, sondern ein Winkel vorhanden. Andererseits ist der Winkel auch kleiner als 90 Grad, also kleiner als ein Viertel des Kreises.
Für spitze Winkel gilt:
Abbildung 3: spitzer Winkel
Ein rechter Winkel ist ein Winkel von genau 90 Grad. Üblicherweise kannst Du ihn mit einem Punkt innerhalb des Winkels markieren (siehe die Abbildung unten). Beim rechten Winkel liegen die Schenkel genau senkrecht aufeinander. Bildlich kannst Du Dir vorstellen, dass das genau ein Viertel eines Kreises ist.
Für rechte Winkel gilt:
Abbildung 4: rechter Winkel
Als stumpfe Winkel werden Winkel bezeichnet, deren Neigung zwischen 90 und 180 Grad liegt. Es findet also mehr als eine Vierteldrehung, aber weniger als eine halbe Drehung statt.
Für stumpfe Winkel gilt:
Abbildung 5: stumpfer Winkel
Beim gestreckten Winkel liegt die Neigung bei genau 180 Grad. Dadurch zeigen die Schenkel genau in die entgegengesetzte Richtung und bilden somit eine Gerade. Der Winkel ist dann genauso groß wie die Hälfte eines Kreises.
Für gestreckte Winkel gilt:
Abbildung 6: gestreckter Winkel
Bei einer Neigung zwischen 180 und 360 Grad wird von einem überstumpfen Winkel gesprochen. Das ist dann mehr als eine halbe Drehung, aber weniger als eine ganze Drehung.
Für überstumpfe Winkel gilt:
Abbildung 7: überstumpfer Winkel
Ein Vollwinkel ist ein Winkel, bei dem ein kompletter Kreis gezogen wurde, weshalb der Winkel 360 Grad hat. Auch beim Vollwinkel liegen die Schenkel aufeinander und zeigen in dieselbe Richtung, genau wie bei einem Nullwinkel. Darum ist es immer eine Sache der Interpretation, ob es sich um einen Voll- oder Nullwinkel handelt. Eine ganze Umdrehung entspricht einem Vollwinkel.
Für Vollwinkel gilt:
Abbildung 8: Vollwinkel
Wenn Du einen Winkel messen willst, kannst Du dafür ein Geodreieck verwenden. Manchmal sind die Schenkel des Winkels aber nicht lang genug, um eine genaue Messung am Geodreieck vorzunehmen.
Wenn das der Fall ist, verlängere mit Deinem Stift einfach die jeweiligen Schenkel. Da die Neigung zwischen den Geraden oder Strahlen sich nicht ändert, bleibt der Winkel gleich und Du kannst seine Größe durch die längeren Schenkel ganz einfach ablesen.
Genaueres dazu erfährst Du auch im Artikel "Winkel messen".
Winkelarten im Bogenmaß
Winkel können nicht nur im Gradmaß (°), sondern auch im Bogenmaß angegeben werden.
Das Bogenmaß ist die Länge des Kreisbogens b auf dem Einheitskreis.
Der Einheitskreis ist ein Kreis mit dem Radius 1.
Abbildung 9: Einheitskreis
Die volle Umdrehung, also 360°, entspricht auf dem Einheitskreis .
180° im Bogenmaß ist die Hälfte, also einfach und 90° ein Viertel, also . Das kannst Du immer weiter so umrechnen oder Du verwendest die Formel.
Die Formel zur Umrechnung von Winkeln vom Gradmaß ins Bogenmaß lautet:
Die Formel zur Umrechnung von Winkeln vom Bogenmaß ins Gradmaß lautet:
In vielen Aufgaben kann es Dir vielleicht helfen, wenn Du weißt, dass Du Winkel noch anders angeben und die Einheiten auch umrechnen kannst. Oft wird nämlich ein Winkel im Bogenmaß angegeben und davon ausgegangen, dass Du weißt, was das ist.
Schneiden sich Geraden, dann entstehen immer mindestens 4 Winkel. Diese Winkel haben dann verschiedene Beziehungen zueinander. Es wird also in Einzelwinkel und Winkelpaare unterschieden.
Wenn sich zwei Geraden schneiden, entstehen am Schnittpunkt zwischen den Geraden vier verschiedene Winkel. Hierbei sind die gegenüberliegenden Winkel immer gleich groß. Sie werden als Scheitelwinkel bezeichnet.
Für Scheitelwinkel gilt:
In der Abbildung sind die Scheitelwinkelpaare in der gleichen Farbe markiert:
Abbildung 10: Scheitelwinkel
Wenn sich zwei Geraden schneiden, dann werden zwei benachbarte Winkel immer als Nebenwinkel bezeichnet. Die Summe aus einem Winkel und einem seiner Nebenwinkel, beziehungsweise die Summe zweier Nebenwinkel, ergibt immer 180 Grad (also einen gestreckten Winkel).
Für Nebenwinkel gilt:
Ein Beispiel für Nebenwinkel ist jeweils in der gleichen Farbe markiert:
Abbildung 11: Nebenwinkel
Wenn zwei parallele Geraden nun von einer weiteren Geraden geschnitten werden, können Verhältnisse zwischen den Winkeln der verschiedenen Schnittpunkte ausgemacht werden. Es bilden sich unter anderem Stufenwinkel.
Stufenwinkel sind die Winkel, die voneinander versetzt auf derselben Seite der Schnittpunkte liegen. Sie sind immer gleich groß.
Du kannst Dir das auch so vorstellen, als würden die Geraden mit den Winkeln den Buchstaben F bilden. Die Stufenwinkel sind dann jeweils an den Kreuzungspunkten der Striche. Aufgrund dessen werden Stufenwinkel manchmal auch als "F-Winkel" bezeichnet.
Abbildung 12: F-Winkel
Für Stufenwinkel gilt:
In der Abbildung sind die Stufenwinkel in der gleichen Farbe markiert.
Abbildung 13: Stufenwinkel
Wechselwinkel entstehen, wie die Stufenwinkel, wenn zwei parallele Geraden von einer dritten Geraden geschnitten werden.
Ein Wechselwinkel ist im Prinzip wie ein Scheitelwinkel, nur am anderen Schnittpunkt. Wechselwinkel sind gleich groß. In einem Fall wie diesem, mit drei involvierten Geraden, gibt es vier Wechselwinkelpaare.
Anschaulich kannst Du Dir das auch vorstellen, als würden die Geraden zusammen ein Z bilden. Die Wechselwinkel liegen dann genau in den Nischen des Z. Deshalb werden sie auch manchmal "Z-Winkel" genannt.
Abbildung 14: Z-Winkel
Allgemein gilt für Wechselwinkel:
Mathematisch kann das so formuliert werden:
In der Abbildung bilden die Winkel, die farblich gleich gekennzeichnet sind, jeweils ein Wechselwinkelpaar. Hier gibt es vier verschiedene Paare.
Abbildung 14: Wechselwinkel
Es wird in Einzelwinkel und Winkelpaare unterschieden.
Einzelwinkel:
Winkelpaare bei zwei geschnittenen Geraden:
Scheitelwinkel (zwei Winkel gegenüber sind gleich groß)
Nebenwinkel (zwei Winkel nebeneinander ergeben 180°)
Winkelpaare bei zwei parallelen Geraden, die von einer Dritten geschnitten werden:
Stufenwinkel (zwei voneinander versetzte Winkel auf der gleichen Seite der Gerade sind gleich groß)
Wechselwinkel (zwei gleich große Scheitelwinkel, aber am anderen Schnittpunkt)
Man muss unterscheiden zwischen Einzelwinkeln und Winkelpaaren.
Einzelwinkel:
Winkelpaare:
Man muss unterscheiden zwischen Einzelwinkeln und Winkelpaaren.
Es gibt 7 verschiedene Einzelwinkel und 4 unterschiedliche Winkelpaare.
Man muss unterscheiden zwischen Einzelwinkeln und Winkelpaaren.
Einzelwinkel:
Winkelpaare:
Ein Winkel wird in Grad (°) oder im Bogenmaß angegeben.
Wie möchtest du den Inhalt lernen?
Wie möchtest du den Inhalt lernen?
Kostenloser mathe Spickzettel
Alles was du zu . wissen musst. Perfekt zusammengefasst, sodass du es dir leicht merken kannst!
Sei rechtzeitig vorbereitet für deine Prüfungen.
Teste dein Wissen mit spielerischen Quizzes.
Erstelle und finde Karteikarten in Rekordzeit.
Erstelle die schönsten Notizen schneller als je zuvor.
Hab all deine Lermaterialien an einem Ort.
Lade unzählige Dokumente hoch und habe sie immer dabei.
Kenne deine Schwächen und Stärken.
Ziele Setze dir individuelle Ziele und sammle Punkte.
Nie wieder prokrastinieren mit unseren Lernerinnerungen.
Sammle Punkte und erreiche neue Levels beim Lernen.
Lass dir Karteikarten automatisch erstellen.
Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.
Melde dich an für Notizen & Bearbeitung. 100% for free.
Speichere Erklärungen in deinem persönlichen Bereich und greife jederzeit und überall auf sie zu!
Mit E-Mail registrieren Mit Apple registrierenDurch deine Registrierung stimmst du den AGBs und der Datenschutzerklärung von StudySmarter zu.
Du hast schon einen Account? Anmelden