Select your language

Suggested languages for you:
Log In Anmelden
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Die All-in-one Lernapp:

  • Karteikarten
  • NotizenNotes
  • ErklärungenExplanations
  • Lernpläne
  • Übungen
App nutzen

Oberflächeninhalt Prisma

Save Speichern
Print Drucken
Edit Bearbeiten
Melde dich an und nutze alle Funktionen. Jetzt anmelden
Mathe

Das Prisma ist ein geometrischer Körper. Wie auch bei anderen Körpern kannst Du das Volumen und den Oberflächeninhalt des Prismas bestimmen. Welche Formeln Du dafür benötigst, erfährst Du in diesem Artikel.

Wiederholung – Was ist ein Prisma?

Ein Prisma entsteht, wenn ein n-Eck entlang einer geraden Linie verschoben wird.

Oberflächeninhalt Prisma Bezeichnungen am Prisma StudySmarterAbbildung 1: Bezeichnungen am Prisma

Die Fläche, auf der das Prisma steht, wird Grundfläche genannt. Die Fläche, die das Prisma oben begrenzt, heißt Deckfläche. Unter dem Mantel eines Prismas versteht man die n Seitenflächen.

Manchmal werden Prismen auch so abgebildet, dass sie nicht auf ihrer Grundfläche stehen, sondern auf einer ihrer Seitenfläche liegen.

Die Seiten der Grundfläche und der Deckfläche werden Grundkanten genannt. Die Strecken, die jeweils zwei zusammen gehörige Eckpunkte von Grund- und Deckfläche verbinden, werden Mantellinien genannt. Alle Mantellinien sind gleich lang und parallel zueinander.

Ein Prisma ist ein geometrischer Körper, der sich aus einer Grundfläche, einer Deckfläche und einem Mantel zusammensetzt.

  • Die Grundfläche und die Deckfläche bestehen aus Vielecken, die kongruent und parallel zueinander sind.
  • Der Mantel besteht aus Parallelogrammen.

Mit der Höhe h eines Prismas wird der Abstand zwischen Grund- und die Deckfläche bezeichnet.

Oberflächeninhalt Prisma Höhe eines Prismas StudySmarterAbbildung 2: Höhe eines geraden und eines schiefen Prismas

Dies trifft auf gerade Prismen zu (links in Abbildung 2). Die Höhe h entspricht gleichzeitig der Mantellänge.

Bei einem schiefen Prisma (rechts in Abbildung 2) hingegen entspricht die Höhe des Prismas dem Abstand der Deckfläche zur Ebene der Grundfläche.

Oberflächeninhalt Prisma – Erklärung und Formel

Wie der Oberflächeninhalt eines Prismas berechnen wird, kann anhand des Netzes eines Prismas verdeutlicht werden.

Betrachte dieses fünfseitige Prisma:

Oberflächeninhalt Prisma fünfseitiges Prisma StudySmarterAbbildung 3: fünfseitiges Prisma

Werden die Seitenflächen nach außen geklappt, entsteht das Netz des Prismas:

Oberflächeninhalt Prisma Netz eines Prismas StudySmarterAbbildung 4: Netz des fünfseitigen Prismas

Für alle Prismen gilt, dass sich der Oberflächeninhalt aus der Grundfläche, der Deckfläche und der Mantelfläche zusammensetzt.

Der Oberflächeninhalt eines Prismas besteht aus dem Flächeninhalt der Deckfläche, der Grundfläche und der Mantelfläche:

Prisma Oberflächeninhalt StudySmarter.

Weil Grund- und Deckfläche gleich groß sind, kann die Formel vereinfacht werden zu:

Prisma Oberflächeninhalt StudySmarter.

Je nachdem welche Form die Grundfläche (Dreieck, Trapez, ...) besitzt, musst die richtige Formel für den Flächeninhalt des jeweiligen Vielecks verwendet werden.

Mantelfläche gerades Prisma

Ein gerades Prisma ist ein Körper, dessen Grund- und Deckfläche zueinander kongruente n-Ecke sind und dessen Seitenflächen Rechtecke sind.

Bei einem geraden Prisma wird die Grundfläche sozusagen nach oben verschoben. Das Netz des geraden Prismas setzt sich aus der n-eckigen Grund- und Deckfläche sowie aus der Mantelfläche zusammen. Die Mantelfläche wiederum besteht aus n rechteckigen Seitenflächen.

In der folgenden Abbildung findest Du ein dreiseitiges Prisma.

Oberflächeninhalt Prisma dreiseitiges gerades Prisma StudySmarterAbbildung 5: Dreiseitiges gerades Prisma

Das Prisma kann so auseinander geklappt werden, dass die drei Seitenflächen des Mantels zusammen ein großes Rechteck bilden.

Oberflächeninhalt Prisma Netz dreiseitiges Prisma StudySmarterAbbildung 6: Netz des dreiseitigen Prismas

Der Flächeninhalt des Mantels M ergibt sich aus der Summe der beteiligten Rechtecksflächen.

Dieses große Rechteck, das aus den drei Seitenflächen gebildet wird, entspricht dem Mantel. Um den Flächeninhalt des Mantels zu berechnen, müssen jetzt die beiden Seitenlängen des Rechtecks multipliziert werden.

  • Die eine Seitenlänge entspricht dem Umfang der Grundfläche des Prismas.
  • Die andere Seitenlänge entspricht der Höhe des Prismas.

Zur Berechnung der Mantelfläche eines geraden Prismas wird folgende Formel verwendet:

Prisma Flächeninhalt Mantel gerades Prisma StudySmarter.

Wenn Du die Formel für den Oberflächeninhalt eines Prismas mit der Formel für die Mantelfläche eines geraden Prismas kombinierst, dann ergibt sich für die Formel für den Oberflächeninhalt des geraden Prismas:

Mantelfläche schiefes Prisma

Bei einem schiefen Prisma verlaufen die Mantellinien nicht senkrecht zu den Grundkanten. Die Seitenflächen sind dann Parallelogramme.

Oberflächeninhalt Prisma dreiseitiges schiefes Prisma StudySmarterAbbildung 7: Dreiseitiges schiefes Prisma

Das Netz eines schiefen Prismas setzt sich aus der n-eckigen Grund- und Deckfläche sowie aus der Mantelfläche zusammen. Der Flächeninhalt des Mantels M eines schiefen Prismas ergibt sich aus der Summe der n beteiligten Parallelogramme.

Für die Berechnung des Mantels ungerader Prismen gibt es keine vergleichbare Formel wie die für gerade Prismen. Die Mantelfläche muss im Einzelfall betrachtet und berechnet werden.

Oberflächeninhalt eines Prismas berechnen

In diesem Abschnitt findest Du verschiedene Beispielaufgaben, in denen der Oberflächeninhalt unterschiedlicher Prismen berechnet wird.

Oberflächeninhalt eines dreiseitigen Prismas (Dreieck)

Beim ersten Beispiel wird der Oberflächeninhalt eines Prismas berechnet, das ein Dreieck als Grundfläche hat.

Aufgabe

Gegeben ist ein gerades Prisma, das ein Dreieck als Grundfläche hat. Das Prismas ist hoch. Die Seitenlängen des Dreiecks sind , und . Die Höhe des Dreiecks zur Grundlinie c beträgt .

Oberflächeninhalt Prisma Dreieck Beispiel StudySmarterAbbildung 8: Gerades Prisma mit dreieckiger Grundfläche

Berechne den Oberflächeninhalt des Prismas.

Lösung

Berechnen der Grund- und Deckfläche

Da Grund- und Deckfläche Dreiecke sind, wird die Formel für den Flächeninhalt eines Dreiecks verwendet:

Berechnen der Mantelfläche

Die Mantelfläche setzt sich aus drei Rechtecken zusammen und kann mit der Formel berechnet werden:

Oberflächeninhalt des Prismas

Du erhältst den Oberflächeninhalt des Prismas, indem Du die berechneten Werte entsprechend der Formel addierst:

Der Oberflächeninhalt des Prismas beträgt .

Oberflächeninhalt eines vierseitigen Prismas

Es gibt unterschiedliche vierseitige Prismen. Sie können zum Beispiel ein Parallelogramm, ein Rechteck oder ein Quadrat als Grundfläche haben. Im nächsten Beispiel hat das Prisma ein Trapez als Grundfläche.

Aufgabe

Gegeben ist ein vierseitiges gerades Prisma. Gegeben sind die Seiten des Trapezes mit , , und . Die Höhe des Trapezes ist .

Die Höhe des Prismas ist .

Oberflächeninhalt Trapezförmiges Prisma Beispiel StudySmarterAbbildung 9: Vierseitiges gerades Prisma

Berechne den Oberflächeninhalt des trapezförmigen Prismas.

Lösung

Berechnen der Grund- und Deckfläche

Da Grund- und Deckfläche Trapeze sind, wird für die Berechnung die Formel für den Flächeninhalt eines Trapezes verwendet:

Berechnen der Mantelfläche

Die Mantelfläche dieses geraden Prismas setzt sich aus vier Rechtecken zusammen und kann mit der Formel berechnet werden:

Oberflächeninhalt des Prismas

Du erhältst den Oberflächeninhalt des Prismas, indem Du die berechneten Werte entsprechend der Formel addierst:

Der Oberflächeninhalt des Prismas beträgt .

Oberflächeninhalt eines sechsseitigen Prismas (Sechseck)

Im letzten Beispiel wird ein sechsseitiges reguläres Prisma betrachtet.

Ein reguläres Prisma ist ein gerades Prisma, das ein regelmäßiges Vieleck als Grundfläche hat.

Ein regelmäßiges Vieleck ist ein Vieleck, bei dem alle Seitenlängen gleich lang und alle Innenwinkel gleich groß sind.

Aufgabe

Gegeben ist ein sechsseitiges reguläres Prisma. Die Seitenlänge des regelmäßigen Sechsecks beträgt . Die Höhe des Prismas ist .

Oberflächeninhalt Prisma Beispiel StudySmarterAbbildung 10: sechsseitiges reguläres Prisma

Berechne den Oberflächeninhalt dieses regulären, sechsseitigen Prismas.

Lösung

Berechnen der Grund- und Deckfläche

Um den Flächeninhalt eines regelmäßigen Sechsecks zu berechnen, gibt es eine Formel. Der Flächeninhalt des regelmäßigen Sechsecks berechnet sich durch:

Berechnen der Mantelfläche

Da die Grundfläche dieses geraden Prismas ein regelmäßiges Sechseck ist, setzt sich die Mantelfläche aus sechs Rechtecken zusammen, die alle den gleichen Flächeninhalt besitzen:

Oberflächeninhalt des Prismas

Du erhältst den Oberflächeninhalt des Prismas, indem Du das doppelte der Grundfläche mit der Mantelfläche addierst:

Der Oberflächeninhalt des Prismas beträgt .

Volumen und Oberflächeninhalt von Prismen – Das Wichtigste

  • Definition eines Prismas: Ein Prisma ist ein geometrischer Körper, der sich aus einer Grundfläche, einer Deckfläche und einem Mantel zusammensetzt.
    • Die Grundfläche und die Deckfläche bestehen aus Vielecken, die kongruent und parallel zueinander sind.
    • Der Mantel besteht aus Parallelogrammen.
  • Der Oberflächeninhalt eines Prismas besteht aus dem Flächeninhalt der Deckfläche, der Grundfläche und der Mantelfläche.
    • Formel für die Oberflächenberechnung:
  • Bei einem geraden Prisma verlaufen die Mantellinien senkrecht zu den Grundkanten. Die Seitenflächen sind dann Rechtecke.
    • Der Mantel eines geraden Prismas kann durch die Formel berechnet werden.
  • Bei einem schiefen Prisma verlaufen die Mantellinien nicht senkrecht zu den Grundkanten. Die Seitenflächen sind dann Parallelogramme.

Oberflächeninhalt Prisma

Den Oberflächeninhalt eines Prismas berechnest du, indem du Grundfläche, Deckfläche und Mantelfläche addierst.

Die Grundfläche eines Prismas ist die Fläche, die so entlang einer geraden Linie verschoben werden kann, dass sie auf der Deckfläche liegt. Die Grundfläche kann bei einem Prisma sehr unterschiedliche Formen annehmen wie zum Beispiel Dreieck, Trapez, Quadrat oder Rechteck.

Die Formel zur Berechnung des Oberflächeninhalts eines Prismas lautet OPrisma=2AGrundfläche+AMantel.

Der Flächeninhalt des Mantels wiederum berechnet sich durch: AMantel=UGrundflächehPrisma.

Den Oberflächeninhalt eines dreiseitigen Prismas berechnet man, indem der Flächeninhalt des Dreiecks verdoppelt wird und der Flächeninhalt des Mantels addiert wird: 

Odreiseitiges Prisma=2ADreieck+AMantel.

60%

der Nutzer schaffen das Oberflächeninhalt Prisma Quiz nicht! Kannst du es schaffen?

Quiz starten

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Melde dich an für Notizen & Bearbeitung. 100% for free.