Select your language

Suggested languages for you:
Log In Anmelden
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Die All-in-one Lernapp:

  • Karteikarten
  • NotizenNotes
  • ErklärungenExplanations
  • Lernpläne
  • Übungen
App nutzen

Flächeninhalt Rechteck

Save Speichern
Print Drucken
Edit Bearbeiten
Melde dich an und nutze alle Funktionen. Jetzt anmelden
Flächeninhalt Rechteck

Hast Du Dir schon einmal die Seiten eines Schuhkartons angesehen und Dich gefragt, welche Form diese genau haben?

Flächeninhalt Rechteck Schuhkarton StudySmarter

Du hast richtig Lust darauf, das Thema rund um das Rechteck zu meistern? Dann bist Du hier genau richtig!

Das Rechteck – Grundlagenwissen

Das Rechteck ist eine viereckige Figur der Geometrie, welche sich durch verschiedene Eigenschaften von anderen Vierecken unterscheidet.

Ein Rechteck hat vier Winkel und vier Seiten, wobei die gegenüberliegenden Seiten gleich lang und parallel sind. Alle Winkel sind genau 90° groß.

Ein vollständig beschriftetes Rechteck inklusive der Winkel, Diagonalen und der Symmetrieachsen, sieht beispielsweise wie in Abbildung 1 aus.

Flächeninhalt Rechteck Rechteck StudySmarterAbbildung 1: Rechteck

Für das Rechteck gilt hierbei:

Sind nicht nur die zwei gegenüberliegenden Seiten des Rechtecks gleich lang, sondern alle vier Seiten, so handelt es sich um ein spezielles Rechteck: das Quadrat. Die Abbildungen 2 und 3 zeigen Dir dabei eine kurze Übersicht der beiden geometrischen Figuren.

Flächeninhalt Rechteck Rechteck StudySmarterAbbildung 2: Das Rechteck Flächeninhalt Rechteck Quadrat StudySmarterAbbildung 3: Das Quadrat

Interessiert an weiteren Infos zu Vierecken? Dann sieh Dir gerne die Artikel zum Rechteck, Quadrat oder Vierecke an.

Das hellblau ausgefärbte Innere der beiden Figuren wird auch als Fläche bezeichnet. Doch wie genau kann diese Fläche bestimmt oder berechnet werden? Dies erfährst Du jetzt, also bleib dran!

Der Flächeninhalt des Rechtecks – Erklärung und Formel

Der Flächeninhalt einer geometrischen Figur hängt von dessen Form ab und gibt an, wie groß diese ist. In der Mathematik wird der Flächeninhalt mit einem großen A gekennzeichnet.

Du musst in einer Hausaufgabe den Flächeninhalt eines Rechtecks bestimmen? Dazu hast Du verschiedene Möglichkeiten. Kann eine maßstäbliche Skizze angefertigt werden, so kannst Du die Fläche des Rechtecks manchmal auch durch Abzählen bestimmen. Wie das geht? Sieh Dir dazu das folgende Beispiel an.

Aufgabe 1

Wie groß ist die Fläche des Rechtecks, wenn dieses (Längeneinheiten) hoch und breit ist? Ein Kästchen hat hierbei eine Fläche von .

Der Ausdruck FE beschreibt die Größe der Fläche in Flächeneinheiten. Dabei wird keine konkrete Längeneinheit wie beispielsweise cm, mm oder m festgelegt.

Flächeninhalt Rechteck Skizze StudySmarterAbbildung 4: Rechteck mit Quadrat

Lösung – Abzählen

Die Fläche A eines türkisen Quadrats ist in dieser Aufgabe vorgegeben. Um die Fläche des gesamten blauen Rechtecks zu ermitteln, so kann zunächst abgezählt werden, wie viele dieser türkisen Quadrate in das blaue Rechteck hineingehen.

Insgesamt sind 28 türkise Quadrate im blauen Rechteck möglich. Um die Fläche A des Rechtecks auch in FE angeben zu können, muss nun die Anzahl der Quadrate mit der Fläche dieser Quadrate multipliziert werden.

Somit beträgt die Fläche der gesamten Figur .

Nicht immer ist jedoch die Fläche eines kleinen Quadrats gegeben und die Fläche eines Rechtecks lässt sich über Abzählen bestimmen. Deshalb kann der Flächeninhalt auch über eine Formel berechnet werden.

Flächeninhalt Rechteck – Formel

Für jede geometrische Figur gibt es für die Berechnung der Fläche eine konkrete Formel, mit welcher Du diese berechnen kannst. Bei einem Rechteck benötigst Du dazu lediglich zwei (nicht gegenüberliegende) Seiten. Wie in Abbildung 5 zu sehen ist, können diese allgemein als Seiten a und b bezeichnet werden.

Flächeninhalt Rechteck Skizze Fläche Rechteck StudySmarterAbbildung 5: Rechtecksfläche

Für ein Rechteck gilt damit:

Der Flächeninhalt A eines Rechtecks mit den Seitenlängen a und b wird wie folgt berechnet:

Flächeninhalt Rechteck Flächenformel StudySmarter

Die beiden Seiten werden multipliziert, um als Ergebnis die Fläche des Rechtecks zu erhalten.

Aufgrund des Kommutativgesetzes kannst Du die beiden Seiten auch vertauschen und verwenden.

Ergibt sich bei der Berechnung der obigen Aufgabe 1 mit der Formel die gleiche Fläche?

Aufgabe 2

Wie groß ist die Fläche A des Rechtecks, wenn für die Seiten und gilt?

Flächeninhalt Rechteck Skizze Fläche Rechteck StudySmarterAbbildung 6: Rechtecksfläche

Lösung – Formel

Statt dem Abzählen von Kästchen, kann hier direkt die Formel zur Berechnung des Flächeninhalts angewandt werden. Es gilt:

Durch Einsetzen der Werte für die Seiten a und b ergibt sich:

Auch über die Berechnung mithilfe der Formel ergibt sich wieder für den Flächeninhalt des blauen Rechtecks eine Fläche von .

Werden den Seiten konkrete Längeneinheiten zugewiesen, so kann die Fläche ebenfalls über die Formel berechnet werden.

Aufgabe 3

Das Gras einer Wiese soll gemäht werden. Die Wiese wird dabei annähernd als Rechtecksfläche betrachtet mit folgenden Angaben:

Flächeninhalt Rechteck Beispiel Wiese StudySmarterAbbildung 7: Wiese als Rechtecksfläche

Welche Fläche muss der Gärtner oder die Gärtnerin mähen?

Lösung

Die Grasfläche kann mithilfe der Formel berechnet werden. Dazu kannst Du zunächst die Seiten bestimmen. So gilt beispielsweise:

und

Da in der Aufgabe keine Seiten a und b gekennzeichnet sind, so kannst Du die Zahlenwerte den Seiten a und b frei zuteilen.

Jetzt musst Du nur noch die Zahlenwerte in die Formel zur Berechnung des Flächeninhalts eines Rechtecks einsetzen und ausrechnen.

Der Gärtner oder die Gärtnerin muss demnach eine Fläche von ca. mähen.

Folgender Abschnitt gibt einen kurzen Überblick über die verschiedenen Bezeichnungen der Längen- und Flächeneinheiten, welche bei der Berechnung solcher Aufgaben verwendet werden.

Übersicht Längen- und Flächeneinheiten

Damit Du besser nachvollziehen kannst, welche Einheit Du verwenden musst, kannst Du Dich an der Tabelle orientieren.

Längeneinheit
Fläche
LE - LängeneinheitenFE - Flächeneinheiten
mm - Millimeter
mm² - Quadratmillimeter
cm - Zentimeter
cm² - Quadratzentimeter
dm - Dezimeter
dm² - Quadratdezimeter
m - Meter
m² - Quadratmeter
km - Kilometer
km² - Quadratkilometer

Sind in Aufgaben verschiedene Längenangaben angegeben, so ist es hilfreich, zunächst in eine geeignete Einheit umzurechnen. Abbildung 8 zeigt Dir dazu eine kurze Übersicht.

Mehr zu den Einheiten findest Du im Artikel Rechnen mit Größen und Längeneinheiten.

Für die Berechnung der Fläche des Rechtecks sind sowohl die Seite a als auch die Seite b zwingend notwendig. Was aber, wenn diese in der Aufgabe nicht gegeben sind?

Flächeninhalt Rechteck – Aufgaben

Nicht immer sind in der Aufgabenstellung direkt die Seitenlängen des Rechtecks gegeben. Jedoch können diese mithilfe von anderen Angaben berechnet werden, beispielsweise mit dem Umfang oder der Diagonalen. Wie dies funktioniert, zeigt folgender Abschnitt.

Flächenberechnung – Mithilfe des Umfangs und einer Seite

Der Umfang eines Rechtecks kann anhand der Seitenlängen a und b bestimmt werden, wobei allgemein gilt:

Interessiert am Artikel zum Umfang eines Rechtecks? Dann sieh doch gleich einmal in den Artikel rein.

Inwiefern hilft Dir der Umfang bei der Flächenberechnung eines Rechtecks? Zeit für ein Beispiel.

Aufgabe 4

Ein Rechteck weist folgende Werte auf:

und

Berechne die Fläche des Rechtecks!

Lösung

Da für die Berechnung der Fläche die Seite b zwingend benötigt wird, muss diese zuerst mithilfe des Umfangs und der Seite a berechnet werden. Hierfür wird die Umfangsformel des Rechtecks nach b freigestellt, die Werte aus der Angabe eingesetzt und schließlich gelöst.

Nach Einsetzen der gegebenen Werte ergibt sich für die Seite b:

Somit beträgt die Seite . Nun kannst Du über die Formel zur Flächenberechnung die Fläche des Rechtecks ermitteln.

Die Fläche des Rechtecks beträgt .

Nachfolgend findest Du die Formeln für die Berechnung beider Seiten a und b mit dem Umfang, damit Du sie Dir nicht mehr herleiten musst, wenn Du eine Aufgabe lösen willst.

Berechnung der Seiten a und b eines Rechtecks über den Umfang U des Rechtecks:

Flächeninhalt Rechteck Flächenformel StudySmarter

Ist statt dem Umfang U eine Diagonale d des Rechtecks gegeben, so lässt sich auch damit die Fläche des Rechtecks berechnen. Dies ist möglich über den Satz des Pythagoras.

Befindest Du Dich bereits in einer höheren Klasse und hast das Thema bereits in der Schule behandelt, dann sieh Dir gerne das Beispiel in der Vertiefung an. Ansonsten überspringe diesen Abschnitt und begib Dich direkt zu den Übungsaufgaben.

Flächenberechnung – Mithilfe der Diagonalen und einer Seite

Wie bereits erwähnt, kannst Du über die Diagonale und eine gegebene Seite im Rechteck die fehlende Seite zur Flächenberechnung ermitteln.

Aufgabe 5

Eine rechteckige Wiese weist folgende Größen aus der Skizze auf. Berechne die Fläche der Wiese!

Flächeninhalt Rechteck Aufgabe Wiese Rechteck StudySmarterAbbildung 9: Aufgabe Wiese

Lösung

Als ersten Schritt wird eine Skizze des Sachverhaltes wie in Abbildung 10 angefertigt, um die gegebenen Längen den Größen zuzuweisen.

Flächeninhalt Rechteck Rechteck Wiese StudySmarterAbbildung 10: Rechteck der Wiese

In dieser Abbildung kannst Du sehen, dass den Größen folgende Werte zugewiesen werden können.

Für die Flächenberechnung des Rechtecks wird zusätzlich die Seite b benötigt. Über den Satz des Pythagoras für rechtwinklige Rechtecke kann diese berechnet werden. Sie entspricht einer Kathete.

Mehr zu diesem Thema findest Du im Artikel Satz des Pythagoras.

Nach Einsetzen der gegebenen Werte erhältst Du für die Seite b:

Die Seite b beträgt demnach . Nun kann mithilfe der Flächenformel die Fläche des Rechtecks berechnet werden.

Die Fläche der Wiese beträgt somit .

Zusammenfassen lassen sich die Formeln mit der Diagonale d wie folgt:

Berechnung der Seiten a und b eines Rechtecks über die Diagonale d des Rechtecks:

Flächeninhalt Rechteck Formel Seiten über Diagonale Rechteck StudySmarter

Möchtest Du direkt noch ein paar Übungsaufgaben machen und bist bereit für den praktischen Teil? Dann auf geht’s zu den Übungsbeispielen!

Flächeninhalt Rechteck – Übungsaufgaben

Falls Du eine Formelsammlung in der Schule benutzen darfst, kannst Du sie Dir gerne für die Aufgaben danebenlegen. Ansonsten schreibe sie Dir gerne auf oder lerne sie direkt auswendig.

Aufgabe 6

Gegeben sind folgende Angaben eines Rechtecks:

Berechne die Fläche des Rechtecks in und .

Zur Erinnerung: Der Umfang eines Rechtecks berechnet sich durch: Flächeninhalt Rechteck Umfangsformel StudySmarter. Mehr Informationen dazu findest Du im Artikel Umfang Rechteck.

Lösung

Gegeben ist der Umfang U, welcher durch das Zusammenzählen aller Seiten berechnet werden kann. Aus obiger Definition lässt sich die Berechnung der fehlenden Seite b entnehmen:

Falls Du die Formel nicht zur Hand hast, kannst Du Dir die Herleitung über die Umfangsformel noch einmal ansehen.

Nun setzt Du die gegebenen Werte ein und erhältst für die Seite b:

Da nun die Seitenlänge b ausgerechnet wurde, kann dieser Wert in die Flächenformel eingesetzt werden.

Flächeninhalt Rechteck Beispiel StudySmarter

Bereit für eine weitere Übungsaufgabe?

Aufgabe 7

Eine rechteckige Wiese hat eine Länge von und eine Breite von . Berechne die Fläche der Wiese!

Lösung

Hierbei genügt es, die allgemeine Flächenformel für das Rechteck aufzuschreiben und die bekannten Werte einzusetzen.

Flächeninhalt Rechteck Beispiel StudySmarter

Die Lösung dieser Aufgabe beträgt somit .

Abschließend noch ein schwieriges vertiefendes Beispiel, welches das Wissen über den Zusammenhang zwischen den Seiten und der Fläche des Rechtecks überprüft.

Aufgabe 8

Die Seite eines Schuhkartons in der Form eines Rechtecks weist folgende Werte auf. Berechne die fehlende Seite.

Lösung

Um diese Aufgabe lösen zu können, wird die allgemeine Flächenformel aufgeschrieben und diese nach der fehlenden Größe b umgeformt.

Setzt Du nun die Werte für den Flächeninhalt A und die Seite a in die Formel ein, so ergibt sich:

Somit hat der Schuhkarton Seitenlängen von und .

Nachfolgend findest Du noch eine kleine Zusammenfassung zum Thema Flächeninhalt des Rechtecks und die Formeln aus dem Artikel.

Flächeninhalt Rechteck – Das Wichtigste auf einen Blick

  • Ein Rechteck besitzt vier Winkel und vier Seiten, wobei die gegenüberliegenden Seiten parallel und gleich lang sind.
  • Alle Winkel sind rechtwinklig und sind demnach groß.
  • Ein Spezialfall des Rechtecks ist das Quadrat mit vier gleich langen Seiten.
  • Der Flächeninhalt des Rechtecks berechnet sich durch: Flächeninhalt Rechteck Fläche StudySmarter
  • Die Seiten a und b lassen sich sowohl mit gegebenem Umfang und auch mit gegebener Diagonale berechnen:
    • Flächeninhalt Rechteck Seitenformel StudySmarter
    • Flächeninhalt Rechteck Seitenformel StudySmarter
    • Flächeninhalt Rechteck Seitenformel StudySmarter

Häufig gestellte Fragen zum Thema Flächeninhalt Rechteck

Der Flächeninhalt A berechnet sich aus der Multiplikation der Seitenlängen a und b:  A = a · b

Verändern sich die Seitenlängen des Rechtecks, so verändert sich ebenfalls der Flächeninhalt. Wenn sich beispielsweise beide Seitenlängen a und b verdoppeln, so vervierfacht sich die Fläche A.

Der Flächeninhalt A berechnet sich aus der Multiplikation der Seitenlängen a und b:  A = a · b

Der Umfang U berechnet sich aus der Summe aller Seitenlängen des Rechtecks: U = 2a + 2b

Mithilfe des Umfangs des Rechtecks und einer gegebenen Seite, kann die fehlende Seite berechnet werden. Anschließend lässt sich über die Formel A = a • b der Flächeninhalt berechnen.

Finales Flächeninhalt Rechteck Quiz

Frage

In welcher Einheit wird der Flächeninhalt angegeben?

Antwort anzeigen

Antwort

Eine Fläche wird meistens in mm² (Millimeter), cm² (Zentimeter), m² (Meter) oder km² (Kilometer) angegeben.

Frage anzeigen

Frage

Nenne die Formel zur Berechnung des Flächeninhalts A eines Rechtecks mit den Seiten a und b!

Antwort anzeigen

Antwort

A = a · b

Frage anzeigen

Frage

Was ist der Unterschied zwischen einem Rechteck und einem Quadrat?

Antwort anzeigen

Antwort

Im Gegensatz zum Quadrat, wo alle vier Seiten gleich lang sind, sind beim Rechteck jeweils die zwei gegenüberliegenden Seiten gleich lang.

Frage anzeigen

Frage

Wie viele Symmetrieachsen hat ein Rechteck?

Antwort anzeigen

Antwort

Zwei.

Frage anzeigen

Frage

Wie wird der Flächeninhalt mathematisch abgekürzt?

Antwort anzeigen

Antwort

Mit dem Großbuchstaben A


Frage anzeigen

Frage

Was ist der Unterschied zwischen einem Rechteck und einem Quader (beispielsweise einem Schuhkarton)?

Antwort anzeigen

Antwort

Ein Rechteck ist eine Figur in der zweidimensionalen Ebene. Ein Quader ist eine Figur im Dreidimensionalen.


Frage anzeigen

Frage

Welche Eigenschaften lassen sich dem Rechteck zuordnen?

Antwort anzeigen

Antwort

Jeweils zwei Seiten sind gleich lang.

Frage anzeigen

Frage

Was ist der Unterschied zwischen dem Umfang und dem Flächeninhalt?

Antwort anzeigen

Antwort

Die eingeschlossene Fläche beschreibt den Flächeninhalt A, während der Umfang U die Summe der umliegenden Seiten ist.


Frage anzeigen

Frage

Was unterscheidet ein Rechteck von einem Drachenviereck?

Antwort anzeigen

Antwort

Beim Drachenviereck sind die Winkel nicht 90° groß.

Frage anzeigen

Frage

Welche der folgenden Figuren stellen ein Rechteck dar?

Antwort anzeigen

Antwort

Seite eines Schuhkartons.

Frage anzeigen
Mehr zum Thema Flächeninhalt Rechteck
60%

der Nutzer schaffen das Flächeninhalt Rechteck Quiz nicht! Kannst du es schaffen?

Quiz starten

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Melde dich an für Notizen & Bearbeitung. 100% for free.