Select your language

Suggested languages for you:
Log In Anmelden
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Die All-in-one Lernapp:

  • Karteikarten
  • NotizenNotes
  • ErklärungenExplanations
  • Lernpläne
  • Übungen
App nutzen

Vierecke

Save Speichern
Print Drucken
Edit Bearbeiten
Melde dich an und nutze alle Funktionen. Jetzt anmelden
Vierecke
Vierecke Schokolade Beispiel Vierecke Eigenschaften StudySmarter

Vierecke sind in vielen alltäglichen Dingen zu erkennen. Nimm zum Beispiel eine Tafel Schokolade. Schaust Du von oben auf die Tafel, bildet die Schokolade ein Rechteck. Die einzelnen Schokoladenstücke sind quadratisch, bilden also Quadrate. All diese Begriffe sind Arten von Vierecken. In dieser Erklärung findest Du eine Übersicht über alle Arten von Vierecken, ihre Berechnung und ihre Eigenschaften!

Vierecke – Eigenschaften

Um die verschiedenen Arten der Vierecke besser kennenzulernen, ist es sinnvoll, sich eine Wiederholung zu Vierecken anzuschauen. Also: Was sind Vierecke denn überhaupt? Und welche Figuren gelten alle als Vierecke?

Vierecke – Grundlagenwissen

Vierecke allgemeines Viereck StudySmarter
Abbildung 1: allgemeines Viereck

Vierecke haben, wie es der Name schon verrät, vier Ecken. Diese Ecken sind Begrenzungspunkte und grenzen die vier Seiten der Vierecke ein. Die Eckpunkte werden gegen den Uhrzeigersinn mit den Buchstaben A, B, C und D bezeichnet. Die Seiten werden ebenfalls gegen den Uhrzeigersinn mit den Kleinbuchstaben a, b, c und d beschrieben. Die Innenwinkelsumme in einem Viereck beträgt .

Ein Viereck ist eine geometrische Figur. Vierecke werden durch vier Strecken begrenzt und besitzen dadurch

  • vier Eckpunkte
  • vier Seiten
  • vier Winkel (die addiert ergeben)

Möchtest Du Dir die Definition von Vierecken nochmal genauer anschauen? Dann schau gerne in dem Artikel Viereck vorbei!

Unter diese Definition fallen viele Figuren. Fallen Dir schon ein paar Figuren ein?

Wie Du bei der Schokolade gesehen hast, gelten sowohl Rechtecke als auch Quadrate als Vierecke. Es gibt jedoch noch andere Arten von Vierecken.

Vierecke – Arten

Es gibt acht Arten von Vierecken. In dieser Übersicht findest Du die verschiedenen Arten dieser Vierecke und ihre Eigenschaften.

Quadrat

  • Die Innenwinkel im Quadrat sind alle gleich groß (90°)
  • alle Seiten sind gleichlang
  • die gegenüberliegenden Seiten sind parallel zueinander
  • zwei gleichlange Diagonalen, die sich einander halbieren und senkrecht aufeinander stehen

Vierecke Quadrat Vierecke Arten StudySmarterAbbildung 2: Quadrat

Rechteck

  • Innenwinkel sind alle gleich groß (90°)
  • jeweils gegenüberliegende Seiten sind gleichlang
  • gegenüberliegende Seiten sind parallel
  • zwei gleichlange Diagonalen, die sich gegenseitig halbieren

Vierecke Rechteck Vierecke Arten StudySmarterAbbildung 3: Rechteck

Raute

  • gegenüberliegende Winkel sind gleich groß
  • alle Seiten sind gleichlang
  • gegenüberliegende Seiten sind parallel
  • zwei Diagonalen, die sich gegenseitig halbieren und senkrecht aufeinander stehen

Vierecke Raute Vierecke Arten StudySmarterAbbildung 4: Raute

Parallelogramm

  • gegenüberliegende Innenwinkel sind gleich groß
  • gegenüberliegende Seiten sind gleichlang
  • gegenüberliegende Seiten sind parallel
  • zwei Diagonalen, die sich halbieren

Vierecke Parallelogramm Vierecke Arten StudySmarterAbbildung 5: Parallelogramm

Drachenviereck

  • zwei gegenüberliegende Innenwinkel sind gleich groß
  • jeweils zwei Seiten sind gleichlang
  • zwei Diagonalen, die senkrecht aufeinander stehen

Vierecke Drachenviereck Vierecke Arten StudySmarterAbbildung 6: Drachenviereck

gleichschenkliges Trapez

  • zwei nebeneinanderliegende Winkel sind gleich groß
  • mindestens zwei gegenüberliegende Seiten sind gleichlang
  • mindestens zwei gegenüberliegende Seiten sind parallel
  • zwei gleichlange Diagonalen

Vierecke gleichschenkliges Trapez Vierecke Arten StudySmarterAbbildung 7: gleichschenkliges Trapez

Trapez

  • mindestens zwei Seiten sind parallel

Vierecke Trapez Vierecke Arten StudySmarterAbbildung 8: Trapez

allgemeines Viereck

  • vier unterschiedliche Winkel
  • vier unterschiedliche Seiten
  • vier Eckpunkte

Vierecke allgemeines Viereck Vierecke Arten StudySmarterAbbildung 9: allgemeines Viereck

Wie die verschiedenen Vierecke aussehen, hast Du jetzt gesehen. Um sich die Formen der Vierecke besser vorzustellen, ist es sinnvoll, sich die Arten von Vierecken im Alltag anzuschauen!

Wie sehen die Vierecke im Alltag aus? Fallen Dir schon ein paar Beispiele ein?

Quadrat:

Vierecke Beispiel StudySmarterSchachbrett

Rechteck:

Vierecke Beispiel StudySmarterGeldscheine

Raute:

Vierecke Beispiel StudySmarterSymbol Raute/Karo auf einem Kartendeck

Parallelogramm:

Vierecke Beispiel StudySmarterEinige Elemente dieser Fliese sind Parallelogramme

Drachenviereck:

Vierecke Beispiel StudySmarterFlugdrache

Trapez:

Vierecke Beispiel StudySmarterForm eines Einkaufskorb (ohne Henkel)

Vierecke – Diagonalen und Symmetrie

Alle Vierecke haben zwei Diagonalen. Diese Diagonalen sind gerade Strecken, die nicht benachbarte Punkte miteinander verbinden. In ein paar Vierecken haben die Diagonalen besondere Eigenschaften. Das sind zum Beispiel:

  • Diagonalen, die senkrecht aufeinander stehen
  • Diagonalen, die sich gegenseitig halbieren
  • Diagonalen, die gleichlang sind.

Vierecke haben also zwei Diagonalen. Aber nicht jedes Viereck hat eine Symmetrie. Dabei kann bei der Symmetrie zwischen Achsensymmetrie und Punktsymmetrie unterschieden werden.

Was ist nochmal Achsensymmetrie und was Punktsymmetrie? Wenn Du Dich das fragst, dann schau gerne in den Artikeln zur Achsensymmetrie und Punktsymmetrie vorbei!

Um die Symmetrie von Vierecken kennenzulernen, kannst Du Dir eine Übersicht über die Vierecke und ihre Symmetrie anschauen!

Vierecke Übersicht Symmetrie Vierecke StudySmarterAbbildung 10: Übersicht Vierecke Symmetrie

Das Quadrat, das Rechteck, die Raute, das gleichschenklige Trapez und das Drachenviereck sind achsensymmetrisch. Das Parallelogramm ist punktsymmetrisch. Wie Du siehst, sind sowohl das allgemeine Trapez und das allgemeine Viereck nicht aufgeführt. Sie haben nämlich keine Achsen - oder Punktsymmetrie.

Vierecke sind geometrische Figuren und sind somit ein Thema der Geometrie. In der Geometrie kannst Du unter anderem Formen und Figuren konstruieren. Auch Vierecke können konstruiert werden. Wie das funktioniert, erfährst Du im nächsten Abschnitt.

Haus der Vierecke

Wie du an der Abbildung erkennen kannst, besteht das Haus der Vierecke aus verschiedenen Stockwerken. Dabei sind die verschiedenen Vierecke nach ihren unterschiedlichen Eigenschaften und Besonderheiten angeordnet. Auf der untersten Ebene, dem Erdgeschoss, befindet sich das allgemeine Viereck. Dies hat außer den vier Eckpunkten und vier Seiten keine besonderen Eigenschaften. Je höher du gehst, desto mehr spezifische Eigenschaften kannst du an den jeweiligen Vierecksarten entdecken. So hat beispielsweise das Quadrat im Obergeschoss vier gleich große (rechte) Winkel, alle Seiten sind gleich lang und die gegenüberliegenden Seiten parallel.

Die Kategorien, die zur Einstufung der verschiedenen Vierecke maßgeblich sind, sind vor allem die Winkel- und Seitenbeziehungen und die Symmetrieeigenschaften. Vielleicht fragst du dich, wie die verschiedenen Vierecke innerhalb der Stockwerke und zwischen Erdgeschoss und Dach angeordnet werden.

Vierecke Haus der Vierecke StudySmarterAbbildung 11: Haus der Vierecke

In der Erklärung zum Viereck findest du eine detaillierte Beschreibung der Stockwerke im Haus der Vierecke.

Vierecke konstruieren

Vierecke Konstruktion Vierecke StudySmarter

Um Vierecke zu konstruieren, benötigst Du einige Angaben. Diese sind meist in Übungs - oder Anwendungsaufgaben gegeben. Zur Konstruktion benötigst Du ein Geodreieck und oft auch einen Zirkel!

Hier findest Du die Konstruktion eines Vierecks anhand eines Beispiels. Wenn Du Dir Konstruktion von geometrischen Elementen genauer anschauen willst, kannst Du gerne in den Artikel "Grundkonstruktionen" reinschauen!

Aufgabe 1

Konstruiere das Viereck mithilfe der folgenden Angaben:

Lösung

Zur Konstruktion dieses Vierecks startest Du mit der Strecke a. Diese zeichnest Du mit der Länge 5 cm.

Vierecke Vierecke konstruieren StudySmarterAbbildung 12: Strecke a

Danach schaust Du in die angegebenen Werte. Welcher der Werte kann Dir jetzt sinnvoll bei der Konstruktion des Vierecks weiterhelfen? Der Winkel ! Er liegt nämlich an Punkt A. Dann weißt Du auch, in welchem Winkel der Punkt D und die dazugehörige Seite d zum Punkt a steht. Zeichne den Winkel mit einer Größe von am Punkt A ein.

Vierecke Vierecke konstruieren StudySmarterAbbildung 13: Winkel ɑ

Du weißt, dass die Strecke d eine Länge von 5 cm hat. Du kannst dann eine Strecke von 5 cm von Punkt A am Winkel anliegend einzeichnen.

Vierecke Vierecke konstruieren StudySmarterAbbildung 14: Strecke d

Die nächsten Angaben, die gegeben sind, ist die Länge der Seite c mit 6,39 cm und die Länge der Seite b mit 3 cm. Um die beiden Seiten anzufügen, solltest Du mit dem Zirkel arbeiten. Dafür zeichnest Du einen Kreisabschnitt um den Punkt B mit einem Radius von 3 cm und einen Kreisabschnitt um Punkt D mit einem Radius von 6,39 cm. Diese Kreisabschnitte sollten sich in einem Punkt schneiden. Dieser Punkt ist dann der Punkt C.

Vierecke Vierecke konstruieren StudySmarterAbbildung 15: Konstruktion Punkt C

Jetzt kannst Du die Punkte miteinander verbinden und erhältst das gesuchte Viereck.

Vierecke Vierecke konstruieren StudySmarterAbbildung 16: konstruiertes Viereck

So kannst Du ein allgemeines Viereck konstruieren.

Das kannst Du aber auch nochmal in den Übungsaufgaben oder in dem Finalen Quiz selbst ausprobieren!

Vierecke – Formeln

Zu den wichtigsten Formeln zur Berechnung eines Vierecks gehören der Umfang (abgekürzt U) und der Flächeninhalt (abgekürzt A). Wie diese Formeln genau aussehen und welche Werte sie in Vierecken angeben, erfährst Du im folgenden Abschnitt!

Umfang von Vierecken

Der Umfang eines Vierecks lässt sich aus der Summe der vier Seitenlängen berechnen. Das bedeutet, dass Du alle Seitenlängen des Vierecks miteinander addierst, um den Umfang U zu ermitteln.

Die Formel für den Umfang U eines allgemeinen Vierecks ist:

Vierecke Formel Umfang StudySmarter

Da es verschiedene Vierecke gibt, ändert sich die Formel abhängig von der Art des Vierecks. Der Umfang wird meistens in den Einheiten Zentimetern (cm), Metern (m) usw. angegeben.

Flächeninhalt von Vierecken

Der Flächeninhalt eines Vierecks ist die Fläche, die von den vier Seiten eingeschlossen wird. Für die Berechnung des Flächeninhalts benötigst Du - je nach Art des Vierecks - die Länge der Seiten, die Länge der Höhe oder die Länge der Diagonalen.

Der Flächeninhalt A eines allgemeinen Vierecks berechnet sich folgendermaßen:

Vierecke Formel Flächeninhalt StudySmarter

Der Winkel 𝜀 ist der Schnittwinkel zwischen den beiden Diagonalen e und f.

Der Flächeninhalt wird meistens in den Einheiten Quadratzentimeter (cm2), Quadratmeter (m2) usw. angegeben.

Eine Zusammenfassung der Formeln für jede Art von Vierecken kannst Du Dir in der folgenden Übersicht anschauen!

Formeln Vierecke – Übersicht

Je nach Art des Vierecks gibt es auch unterschiedliche Formeln für die Berechnung des Flächeninhalts und des Umfangs. Eine Übersicht ist da immer ganz hilfreich, um mit den ganzen Formeln nicht durcheinanderzugeraten!

Art von ViereckFormel UmfangFormel FlächeninhaltBild
Quadrat
Vierecke Formel Umfang Quadrat StudySmarter
Vierecke Formel Flächeninhalt Quadrat StudySmarter

Vierecke Quadrat Formel StudySmarterAbbildung 17: Quadrat

Rechteck
Vierecke Formel Umfang Rechteck StudySmarter
Vierecke Formel Flächeninhalt Rechteck StudySmarter

Vierecke Formel Rechteck StudySmarterAbbildung 18: Rechteck

Raute
Vierecke Formel Umfang Raute StudySmarter
Vierecke Formel Flächeninhalt Raute StudySmarter

Vierecke Formel Raute StudySmarterAbbildung 19: Raute

Parallelogramm
Vierecke Formel Umfang Parallelogramm StudySmarter
Vierecke Formel Flächeninhalt Parallelogramm StudySmarter

Vierecke Formel Parallelogramm StudySmarterAbbildung 20: Parallelogramm

Drachenviereck
Vierecke Formel Umfang Drachenviereck StudySmarter
Vierecke Formel Flächeninhalt Drachenviereck StudySmarter

Vierecke Formel Drachenviereck StudySmarterAbbildung 21: Drachenviereck

Trapez
Vierecke Formel Umfang Trapez StudySmarter
Vierecke Formel Flächeninhalt Trapez StudySmarter

Vierecke Formel Trapez StudySmarterAbbildung 22: Trapez

Diese Formeln kannst Du für die Ermittlung und Berechnung von Vierecken anwenden. Achte immer genau auf die Eigenschaften der Vierecke, um die richtigen Formeln für die richtigen Vierecke zu verwenden!

Aufgabe 2

Berechne den Umfang und den Flächeninhalt einer Raute mit der Seitenlänge und den Diagonalen und .

Lösung

Den Umfang berechnest Du, indem Du alle Seiten miteinander addierst. Weil bei einer Raute alle Seiten gleichlang sind, kannst Du die gegebene Seitenfläche a mit 4 multiplizieren.

Der Umfang beträgt .

Für den Flächeninhalt kannst Du die Werte in die in der Übersicht gegebene Formel einsetzen. Das sieht dann so aus:

Der Flächeninhalt beträgt .

Du kannst für die Formeln auch immer in die Übersicht schauen!

Vierecke – Übungen

Hier kannst Du Dein Wissen über Vierecke, ihre Formeln und Eigenschaften überprüfen. Du kannst gerne nochmal in die Übersichten und Definitionen schauen, wenn Du an einer Aufgabe hängst!

Aufgabe 3

Welche Aussagen über Vierecke sind wahr und welche nicht? Entscheide, welche der folgenden Aussagen falsch sind und begründe Deine Entscheidung!

  1. Ein Drachenviereck hat drei Symmetrieachsen.
  2. Bei einem Trapez sind mindestens zwei Seiten parallel zueinander.
  3. Ein Parallelogramm hat zwei Symmetrieachsen.
  4. Der Flächeninhalt eines Quadrats berechnet sich mit der Formel .
  5. Bei einem Rechteck gilt: Die Länge der Diagonale e ist gleich der Länge der Diagonale f.

Lösung

  1. Nein, ein Drachenviereck hat eine senkrechte Symmetrieachse.
  2. Ja.
  3. Nein, ein Parallelogramm ist punktsymmetrisch und hat somit ein Symmetriezentrum.
  4. Nein, das ist die Formel zur Berechnung des Flächeninhalts eines Parallelogramms. Der Flächeninhalt eines Quadrats berechnet sich mit der Formel .
  5. Ja.

Aufgabe 4

Konstruiere ein Parallelogramm mithilfe der folgenden Angaben:

Lösung

Zeichne die Strecke a mit einer Länge von 6 cm:

Vierecke Vierecke konstruieren StudySmarterAbbildung 23: Strecke a

Danach kannst Du mit dem Geodreieck den Winkel ɑ an dem Punkt A anzeichnen.

Vierecke Vierecke konstruieren StudySmarterAbbildung 24: Winkel ɑ

An diesen Winkel kannst Du die Strecke b mit einer Länge von 4 cm anzeichnen.

Vierecke Vierecke konstruieren StudySmarterAbbildung 25: Strecke b

Du weißt, dass die zu konstruierende Figur ein Parallelogramm ist. In einem Parallelogramm sind die jeweils gegenüberliegenden Seiten gleichlang und parallel. Das heißt, Du kannst jetzt parallel zu Seite a an der Seite b eine Strecke von 6 cm anzeichnen und Du erhältst die zweite Seite a.

Vierecke Vierecke konstruieren StudySmarterAbbildung 26: zweite Strecke a

Zuletzt kannst Du die letzte Seite anzeichnen, und zwar die zweite Seite b.

Vierecke Vierecke konstruieren StudySmarterAbbildung 27: konstruiertes Parallelogramm

So kannst Du ein Parallelogramm konstruieren.

Vierecke – Das Wichtigste

  • Ein Viereck hat vier Eckpunkte, vier Seiten und vier Winkel
  • Die Eckpunkte eines Vierecks werden gegen den Uhrzeigersinn mit den Buchstaben A, B, C und D beschriftet
  • Die Seiten eines Vierecks werden gegen den Uhrzeigersinn mit den Kleinbuchstaben a, b, c und d beschriftet
  • Es gibt acht Arten von Vierecken
  • Jedes Viereck hat eine Innenwinkelsumme von 360°
  • Jedes Viereck hat zwei Diagonalen
  • Nicht jedes Viereck ist symmetrisch
  • Der Umfang eines allgemeinen Vierecks wird mit der Formel berechnet
  • Der Flächeninhalt eines allgemeinen Vierecks wird mit der Formel berechnet

Nachweise

  1. Becker et al. (2015). Duden Formeln und Werte. Cornelsen Verlag.
  2. Hausleiter (2015). Mathematik - Aktuelles Grundwissen. Circon Verlag.

Häufig gestellte Fragen zum Thema Vierecke

Es gibt insgesamt acht Arten von Vierecken. Darunter fallen das Quadrat, das Rechteck, die Raute, das Parallelogramm, das Drachenviereck, das gleichschenklige Trapez, das allgemeine Trapez und das allgemeine Viereck. 

Der Flächeninhalt wird abgekürzt mit einem großen A bezeichnet. Je nach Art des Vierecks ist die Berechnung des Flächeninhalts unterschiedlich. Der Flächeninhalt eines Quadrats wird beispielsweise mit der Formel A = a2 berechnet. Für ein Rechteck gilt die Formel A = a・b.

Vierecke haben vier Eckpunkte, vier Seiten und vier Innenwinkel, die in der Summe immer 360° ergeben. Jedes Viereck hat zwei Diagonalen, die durch zwei nicht benachbarte Punkte begrenzt werden.

Vierecke können eine Symmetrie aufweisen. Achsensymmetrisch sind Quadrate mit vier Symmetrieachsen, Rechtecke und Rauten mit zwei Symmetrieachsen und Trapeze und Drachenvierecke mit einer Symmetrieachse. Das Parallelogramm ist punktsymmetrisch und hat ein Symmetriezentrum.

Finales Vierecke Quiz

Frage

Welche Eigenschaften treffen auf das Quadrat zu?

Antwort anzeigen

Antwort

Die Diagonalen stehen senkrecht aufeinander.

Frage anzeigen

Frage

Was gilt für die Raute?

Antwort anzeigen

Antwort

Die nebeneinanderliegenden Winkel sind gleichgroß.

Frage anzeigen

Frage

Ein Quadrat ist auch gleichzeitig ein/eine...

Antwort anzeigen

Antwort

...Rechteck

Frage anzeigen

Frage

In welcher Einheit wird der Flächeninhalt angegeben?

Antwort anzeigen

Antwort

in Litern.

Frage anzeigen

Frage

Welche Eigenschaften sind dem Drachenviereck zuzuordnen?

Antwort anzeigen

Antwort

Alle Seiten sind gleichlang.

Frage anzeigen

Frage

Wie viele Arten von Vierecken gibt es?

Antwort anzeigen

Antwort

Acht.

Frage anzeigen

Frage

Ein Quadrat ist auch ein Rechteck, deshalb ist ein Rechteck auch ein Quadrat. Stimmt das?

Antwort anzeigen

Antwort

Nein. Ein Rechteck hat nicht alle gleichen Eigenschaften wie ein Quadrat (Diagonalen stehen im Rechteck nicht Diagonal aufeinander, nicht alle Seiten sind gleichlang).

Frage anzeigen
Mehr zum Thema Vierecke
60%

der Nutzer schaffen das Vierecke Quiz nicht! Kannst du es schaffen?

Quiz starten

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Melde dich an für Notizen & Bearbeitung. 100% for free.