Select your language

Suggested languages for you:
Log In Anmelden
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Die All-in-one Lernapp:

  • Karteikarten
  • NotizenNotes
  • ErklärungenExplanations
  • Lernpläne
  • Übungen
App nutzen

Schwerpunkt eines Dreiecks

Save Speichern
Print Drucken
Edit Bearbeiten
Melde dich an und nutze alle Funktionen. Jetzt anmelden
Schwerpunkt eines Dreiecks

In einem Dreieck sind zahlreiche Konstruktionen möglich, um neue geometrische Objekte oder Punkte mit besonderen Eigenschaften zu erhalten. Besonders anschaulich ist der Schwerpunkt des Dreiecks.

Das ist der Punkt, an dem du ein Dreieck mit einem Finger von unten balancieren kannst, ohne dass es herunterfällt. Alternativ ist es auch der Punkt, an dem du das Dreieck aufhängen kannst, sodass es genau waagrecht (und damit parallel zum Boden) ausgerichtet ist.

Versuche einmal auf diese Art selbst den Schwerpunkt deines Geodreiecks zu bestimmen.

Schwerpunkt eines Dreiecks, Schwerpunkt Geodreieck selbst bestimmen, StudySmarterAbbildung 1: Schwerpunkt eines Geodreiecks selbst bestimmen

Wie man diesen besonderen Punkt für ein beliebiges Dreieck bestimmen kann, ohne es auf Pappe auszuschneiden und zu balancieren, wird im Folgenden aufgezeigt.

Schwerpunkt und Seitenhalbierende Dreieck Grundlagenwissen

Bevor wir uns mit der Konstruktion befassen, wiederholen wir knapp, was als Schwerpunkt eines Dreiecks gilt.

Der Schwerpunkt eines Dreiecks ist der eindeutige Punkt im Dreieck, in dem sich die drei Seitenhalbierenden schneiden. Er wird auch Massenmittelpunkt oder physikalischer Schwerpunkt der Dreiecksfläche genannt.

Zur Erinnerung: Eine Seitenhalbierende eines Dreiecks verläuft von einer Ecke des Dreiecks zum Seitenmittelpunkt der gegenüberliegenden Dreiecksseite. Mehr über die Seitenhalbierenden im Dreieck kannst du gerne in unserem Artikel nachlesen. Außerdem werden der Schwerpunkt eines Dreiecks und seine Eigenschaften in einem entsprechenden Artikel ausführlicher erklärt.

Schwerpunkt eines Dreiecks, Seitenhalbierende, StudySmarterAbbildung 2: Seitenhalbierende vom Punkt C zum Mittelpunkt M der Strecke AB

Die Seitenhalbierenden nennt man auch Schwerelinien. Der Name kommt daher, dass sie das Dreieck ausgehend von einer Ecke so teilen, dass zwei flächengleiche ("gleichschwere") Teildreiecke entstehen.

Zur Veranschaulichung: Die Schwerelinien sind die Linien, die durch die Eckpunkte des Dreiecks verlaufen und auf denen du ein Dreieck mit einem Lineal oder Stift balancieren kannst. Davon gibt es genau drei Stück.

Schwerpunkt eines Dreiecks, Schwerelinie Geodreieck selbst bestimmen, StudySmarterAbbildung 3: Eine Schwerelinie eines Geodreiecks

Wird das Dreieck nun im Schwerpunkt – dem Schnittpunkt der Schwerelinien – gehalten, ziehen die Flächen auf den beiden Seiten der Schwerelinien jeweils mit gleicher Kraft nach unten. So wird das Dreieck im Gleichgewicht gehalten.

Alle drei Seitenhalbierenden schneiden sich in einem Punkt im Dreiecksinneren, da sie innerhalb des Dreiecks verlaufen. Das gilt für jedes und innerhalb von jedem Dreieck (im Gegensatz zu, beispielsweise, den Mittelsenkrechten).

Der Schwerpunkt hat noch eine besondere Eigenschaft: Er teilt jede Seitenhalbierende im Verhältnis 2:1. Das bedeutet, dass das Teilstück jeder Seitenhalbierenden vom Eckpunkt bis zum Schwerpunkt doppelt so lang ist wie das andere Teilstück vom Schwerpunkt zur Dreiecksseite.

Mehr dazu im Artikel zum Schwerpunkt eines Dreiecks.

Schwerpunkt eines Dreiecks, Seitenhalbierende und Schwerpunkt Dreieck ABC, StudySmarterAbbildung 4: Die drei Seitenhalbierenden und ihr Schnittpunkt als Schwerpunkt im Dreieck ABC

Die Seitenhalbierenden sind üblicherweise nach der Dreiecksseite benannt, die sie halbieren. So ist die Seitenhalbierende die Strecke, die durch den Punkt C verläuft und die Seite c halbiert.

Schwerpunkt eines Dreiecks konstruieren

Um den Schwerpunkt eines Dreiecks zu konstruieren, benötigst du einen Zirkel und ein Lineal.

Du kannst den Schwerpunkt auch berechnen, statt ihn zu konstruieren. Dies erfordert allerdings einige Rechenschritte. Im Artikel Schwerpunkt eines Dreiecks wird erklärt, wie die Berechnung funktioniert.

Zur Konstruktion:

Indem du nacheinander die einzelnen Schritte der untenstehenden Tabelle in deinem Dreieck anwendest, kannst du leicht den Schwerpunkt erarbeiten.

Schritt
Beschreibung
Visualisierung (Abbildungen 5 - 6)
1. Dreieck ABC
Starte mit einem beliebigen Dreieck, dessen Schwerpunkt du konstruieren möchtest.

Schwerpunkt eines Dreiecks Konstruktion StudySmarter

2. Konstruktion der Seitenmittelpunkte
Konstruiere für die drei Strecken a, b und c jeweils den Seitenmittelpunkt. Hier am Beispiel der Seite b. Zeichne dazu zwei Kreise und mit demselben Radius um die beiden Eckpunkte A und C der Strecke b. Der Radius der Kreise muss dabei größer sein als die halbe Seitenlänge von b (sonst gibt es keinen Schnittpunkt der Kreise). Verbinde dann die beiden Schnittpunkte der Kreise D und E.Diese Verbindungsstrecke schneidet die Dreiecksseite b im Seitenmittelpunkt .

Schwerpunkt eines Dreiecks Konstruktion StudySmarter

Schwerpunkt eines Dreiecks Konstruktion StudySmarter

Die Konstruktion der Seitenmittelpunkte entspricht größtenteils dem Verfahren zur Konstruktion einer Mittelsenkrechten. Eine detailliertere Erklärung zu diesem wichtigen Schritt steht im Artikel Mittelsenkrechte konstruieren.

Schritt
Beschreibung
Visualisierung (Abbildungen 7 - 8)
3. Einzeichnen der Seitenhalbierenden
Die Seitenhalbierenden erhältst du, indem du die Seitenmittelpunkte , und )mit den gegenüberliegenden Ecken verbindest.

Schwerpunkt eines Dreiecks Konstruktion StudySmarter

4. Einzeichnen des
Schwerpunktes
Der Schnittpunkt der Seitenhalbierenden ist der Schwerpunkt S des Dreiecks.

Schwerpunkt eines Dreiecks Konstruktion StudySmarter

Schwerpunkt eines Dreiecks konstruieren - ausführliches Beispiel

Wie die oben beschriebenen Schritte angewendet werden können, wird anhand des folgenden Beispiels zur Konstruktion des Schwerpunktes ausführlich besprochen:

Aufgabe

Konstruiere den Schwerpunkt des Dreiecks mit den Seitenlängen , und .

Lösung

1. Schritt: Dreieck ABC

Zeichne das Dreieck.

Schwerpunkt eines Dreiecks, Dreieck Konstruktionsschritte, StudySmarterAbbildung 9:Dreieck ABC

2. Schritt: Konstruktion der Seitenmittelpunkte

Du kannst mit einer beliebigen Dreiecksseite beginnen. Wir beginnen hier mit der Seite a.

Zeichne zwei Kreise mit Radius r = 2 cm (> 1,5 cm) um die Punkte B und C. Dabei entstehen die Kreise und . Zeichne deren Schnittpunkte E und F ein.

Schwerpunkt eines Dreiecks, Konstruktionsschritt 2, StudySmarterAbbildung 10: Konstruktion Seitenmittelpunkt von a

Verbinde jetzt E und F. Der Schnittpunkt der Verbindungsstrecke mit der Dreiecksseite a liefert den Mittelpunkt der Seite a.

Schwerpunkt eines Dreiecks, Konstruktionsschritt 2, StudySmarterAbbildung 11: Konstruktion Seitenmittelpunkt von a

Wiederhole dieses Verfahren an der Dreiecksseite b. Aus Gründen der Übersichtlichkeit werden in den Abbildungen die vorherigen Konstruktionsschritte ausgeblendet.

Zeichne zwei Kreise mit Radius 2 cm (> 1,75 cm) um die Eckpunkte A und C der Dreiecksseite b. Es entstehen die Kreise und . Zeichne dann die Schnittpunkte J und K der beiden Kreise ein.

Schwerpunkt eines Dreiecks, Konstruktionsschritt 2, StudySmarterAbbildung 12: Konstruktion Seitenmittelpunkt von b

Verbinde im nächsten Schritt die Punkte J und K miteinander. Der Schnittpunkt der Verbindungsstrecke und der Dreiecksseite b ist der Seitenmittelpunkt .

Schwerpunkt eines Dreiecks, Konstruktionsschritt 2, StudySmarterAbbildung 13: Konstruktion Seitenmittelpunkt von b

Zuletzt konstruieren wir den Mittelpunkt der Seite c. Zeichne dazu Kreise und mit Radius r = 3 cm (> 2,5 cm) um die Eckpunkte A und B. Markiere auch hier wieder die Schnittpunkte N und O der beiden Kreise.

Schwerpunkt eines Dreiecks, Konstruktionsschritt 2, StudySmarterAbbildung 14: Konstruktion Seitenmittelpunkt von c

Du erhältst den Seitenmittelpunkt , indem du die Verbindungsstrecke einzeichnest und ihren Schnittpunkt mit der Seite c bestimmst.

Schwerpunkt eines Dreiecks, Konstruktionsschritt 2, StudySmarterAbbildung 15: Konstruktion Seitenmittelpunkt von c

3. Schritt: Einzeichnen der Seitenhalbierenden

Verknüpfe dazu die Seitenmittelpunkte mit den gegenüberliegenden Eckpunkten des Dreiecks.

Schwerpunkt eines Dreiecks, Konstruktionsschritt 3, StudySmarterAbbildung 16: Einzeichnen der Seitenhalbierenden

4. Schritt: Einzeichnen des Schwerpunktes

Kennzeichne nun den Schwerpunkt S des Dreiecks als Schnittpunkt der Seitenhalbierenden.

Schwerpunkt eines Dreiecks, Konstruktionsschritt 4, StudySmarterAbbildung 17: Einzeichnen des Schwerpunktes

Fertig ist die Konstruktion deines Schwerpunktes S des Dreiecks ABC.

Schwerpunkte eines Dreiecks - besondere Dreiecke

Im folgenden Abschnitt wird erläutert, ob und welche besonderen Eigenschaften der Schwerpunkt im gleichseitigen, gleichschenkligen und rechtwinkligen Dreieck hat.

Schwerpunkt im gleichseitigen Dreieck

Schwerpunkt eines Dreiecks, gleichseitiges Dreieck, StudySmarterAbbildung 18: Schwerpunkt des gleichseitigen Dreiecks DEF als Schnittpunkt der Seitenhalbierenden

Im gleichseitigen Dreieck fallen die Seitenhalbierenden mit den Mittelsenkrechten und den Winkelhalbierenden zusammen. Also kann der Schwerpunkt auch als Schnittpunkt der Winkelhalbierenden oder als Schnittpunkt der Mittelsenkrechten konstruiert werden.

Eine Anleitung zur Konstruktion von Winkelhalbierenden und Mittelsenkrechten findest du in den jeweiligen Artikeln.

Schwerpunkt eines Dreiecks, gleichseitiges Dreieck, StudySmarterAbbildung 19: Schwerpunkt des gleichseitigen Dreiecks ABC als Schnittpunkt der Winkelhalbierenden bzw. Mittelsenkrechten

Schwerpunkt im gleichschenkligen Dreieck

Schwerpunkt eines Dreiecks, gleichschenkliges Dreieck, StudySmarterAbbildung 20: Schwerpunkt des gleichschenkligen Dreiecks ABC als Schnittpunkt der Seitenhalbierenden

Im gleichschenkligen Dreieck fallen die Winkelhalbierenden und Mittelsenkrechten nicht mit den Seitenhalbierenden zusammen. In der Abbildung wird dies anhand des Dreiecks ABC deutlich:

Die Mittelsenkrechten sind gestrichelt dargestellt, die Seitenhalbierenden wie oben in türkis, die Winkelhalbierenden in Schwarz. Die Schnittpunkte der Winkelhalbierenden W und der Mittelsenkrechten M entsprechen nicht dem Schwerpunkt S.

Wie du im Bild gut erkennen kannst, liegen die drei Schnittpunkte auf einer Geraden (die gleichzeitig Seitenhalbierende, Mittelsenkrechte und Winkelhalbierende ist). Dies ist eine wichtige Eigenschaft des gleichschenkligen Dreiecks.

Um den Schwerpunkt eines gleichschenkligen Dreiecks zu konstruieren, musst du also den gewöhnlichen Weg über die Seitenhalbierenden und deren Schnittpunkt gehen.

Schwerpunkt eines Dreiecks, gleichschenkliges Dreieck, StudySmarterAbbildung 21: Schwerpunkt des gleichschenkligen Dreiecks ABC im Vergleich zum Schnittpunkt der Winkelhalbierenden W und dem Schnittpunkt der Mittelsenkrechten M

Schwerpunkt im rechtwinkligen Dreieck

Schwerpunkt eines Dreiecks, Schwerpunkt Spezialfall rechtwinkliges Dreieck, StudySmarterAbbildung 22: Schwerpunkt des rechtwinkligen Dreiecks ABC als Schnittpunkt der Seitenhalbierenden

Auch im rechtwinkligen Dreieck fallen die Winkelhalbierenden und Mittelsenkrechten nicht mit den Seitenhalbierenden zusammen. In der Abbildung wird dies anhand des Dreiecks ABC deutlich:

Die Mittelsenkrechten sind gestrichelt, die Seitenhalbierenden in türkis (siehe oben), und die Winkelhalbierenden in Schwarz dargestellt. Die Schnittpunkte der Winkelhalbierenden W und der Mittelsenkrechten M entsprechen nicht dem Schwerpunkt S.

Vielleicht ist dir aufgefallen, dass der Schnittpunkt der Mittelsenkrechten auf der Hypotenuse des rechtwinkligen Dreiecks liegt. Das ist eine wichtige Eigenschaft von rechtwinkligen Dreiecken. Obwohl diese Information für die Konstruktion des Schwerpunktes nicht relevant ist, kann sie sich in anderen Aufgaben als hilfreich erweisen.

Schwerpunkt eines Dreiecks, Schwerpunkt Spezialfall rechtwinkliges Dreieck, StudySmarterAbbildung 23: Schwerpunkt eines rechtwinkligen Dreiecks ABC im Vergleich zum Schnittpunkt der Winkelhalbierenden W und der Mittelsenkrechten M

Schwerpunkt eines Dreiecks – Das Wichtigste

  • Der Schwerpunkt eines Dreiecks ist leicht zu konstruieren.
  • Der Schwerpunkt eines Dreiecks ist der Schnittpunkt der Seitenhalbierenden.
  • Die Seitenhalbierenden eines Schwerpunktes werden auch Schwerelinien genannt. Somit ist der Schwerpunkt der Schnittpunkt der Schwerelinien des Dreiecks.
  • Anschaulich ist der Schwerpunkt eines Dreiecks der Punkt, auf dem ein Dreieck balanciert werden kann, ohne dass es seitlich kippt oder herunterfällt.
  • Beim gleichseitigen Dreieck fällt der Schwerpunkt mit dem Schnittpunkt der Winkelhalbierenden und dem Schnittpunkt der Mittelsenkrechten zusammen.

Häufig gestellte Fragen zum Thema Schwerpunkt eines Dreiecks

Den Schwerpunkt in einem Dreieck bekommt man, indem man den Schnittpunkt der Seitenhalbierenden im Dreieck bestimmt. Um die Seitenhalbierenden zu zeichnen, muss man zunächst die drei Mittelsenkrechten konstruieren, weil deren Schnittpunkt mit der jeweiligen Dreiecksseite der Mittelpunkt der Dreiecksseite ist. Verbindet man den Mittelpunkt der Dreiecksseite mit dem gegenüberliegenden Eckpunkt, so erhält man die Seitenhalbierende.

Der Schwerpunkt in einem Dreieck ist der Punkt, in dem sich die drei Seitenhalbierenden des Dreiecks schneiden. Er ist der Massenschwerpunkt des Dreiecks, also der Punkt, an dem das Dreieck auf einer Fingerspitze oder Bleistiftspitze balanciert werden kann, ohne dass es herunterfällt. Von diesem Punkt aus ziehen alle Seiten des Dreiecks mit der gleichen Kraft zu Boden und halten das Dreieck so im Gleichgewicht.

Nein, der Schwerpunkt eines Dreiecks kann nicht außerhalb des Dreiecks liegen. Die Seitenhalbierenden liegen als Strecken alle innerhalb des Dreiecks und damit auch ihr Schnittpunkt. Auch anschaulich muss sich der Massenmittelpunkt der Dreiecksfläche innerhalb des Dreiecks befinden.

Eine Seitenhalbierende ist eine Strecke im Dreieck, die von einem Eckpunkt des Dreiecks zum Mittelpunkt der gegenüberliegenden Seite verläuft. Sie teilt damit das Dreieck in zwei flächengroße, "gleichschwere" Teildreiecke. Daher wird die auch Schwerelinie des Dreiecks genannt. Es gibt genau drei Seitenhalbierende im Dreieck.

Finales Schwerpunkt eines Dreiecks Quiz

Frage

Wie kannst du den Schwerpunkt eines
Dreiecks anschaulich beschreiben?

Antwort anzeigen

Antwort

Der Punkt, in dem das Dreieck nicht herunterfällt, wenn es auf einem Bleistift/einer Fingerspitze balanciert wird. Alternativ der Punkt, an dem man ein Dreieck aufhängen kann, sodass es waagrecht (genau parallel zum Boden) hängt.

Frage anzeigen

Frage

Warum liegt der Schwerpunkt eines Dreiecks immer innerhalb des Dreiecks?

Antwort anzeigen

Antwort

Das liegt daran, dass die Seitenhalbierenden drei Strecken sind, die nur im Inneren des Dreiecks verlaufen. Daher liegt auch ihr Schnittpunkt im Inneren des Dreiecks. Auch anschaulich muss sich der Massenmittelpunkt des Dreiecks innerhalb des Dreiecks befinden (Vorstellung, das Dreieck dort auszubalancieren).

Frage anzeigen

Frage

In welchem Dreieck fällt der Schnittpunkt der Winkelhalbierenden und der Schnittpunkt der Mittelsenkrechten immer mit dem Schwerpunkt zusammen?

Antwort anzeigen

Antwort

In jedem Dreieck

Frage anzeigen

Frage

Wie viele Seitenhalbierende gibt es
in einem Dreieck?

Antwort anzeigen

Antwort

1

Frage anzeigen

Frage

Wie konstruiere ich den Schwerpunkt
im Dreieck?

Antwort anzeigen

Antwort

  1. Zunächst musst du die Seitenmittelpunkte konstruieren. Dazu jeweils zwei Kreise mit dem gleichen Radius um die Eckpunkte der Dreiecksseite zeichnen, die beiden Schnittpunkte der Kreise verbinden. Die Verbindungsstrecke der Schnittpunkte schneidet die Dreiecksseite im Seitenmittelpunkt.
  2. Die drei Seitenhalbierenden als Verbindung von den Seitenmittelpunkten und den gegenüberliegenden Eckpunkten einzeichnen. 
  3. Der Schwerpunkt ist der Schnittpunkt der Seitenhalbierenden.
Frage anzeigen

Frage

Welchen Zusammenhang gibt es zwischen den
Schwerelinien des Dreiecks und dem
Schwerpunkt des Dreiecks?

Antwort anzeigen

Antwort

Die Schwerelinien sind eine andere Bezeichnung für die Seitenhalbierenden im Dreieck. Der Schwerpunkt ist daher der Schnittpunkt der Schwerelinien. 


Frage anzeigen

Frage

Warum muss der Radius der Kreise, die für die Konstruktion der Seitenmittelpunkte benötigt werden, mehr als die halbe Seitenlänge betragen?

Antwort anzeigen

Antwort

Weil die Schnittpunkte der Kreise für die Konstruktion benötigt werden (deren Verbindungsstrecke schneiden die Dreiecksseite im Seitenmittelpunkt). Ist der Radius kleiner als die halbe Seitenlänge, dann schneiden sich die Kreise nicht.

Frage anzeigen

Frage

Dein kleiner Bruder möchte sein selbstgebasteltes Dreieck so aufhängen, dass es genau parallel zur Zimmerdecke hängt. Er weiß nicht genau, an welchem Punkt er es dafür aufhängen muss. Hast du einen Tipp?

Antwort anzeigen

Antwort

Der gesuchte Aufhängepunkt ist der Schwerpunkt des 
Dreiecks. Von dort zieht das Dreieck auf allen Seiten gleich stark zum Boden.

Frage anzeigen

Frage

Dein Vater hat ein großes Dreieck aus einer Holzplatte ausgeschnitten. Du hast heute in der Schule gelernt, was der Schwerpunkt in einem Dreieck ist. Wie kannst du den Schwerpunkt des Holzdreiecks ohne Zeichnung annähernd bestimmen?

Antwort anzeigen

Antwort

Das Dreieck so auf der Fingerspitze balancieren, dass es nicht herunterfällt/ parallel zum Boden ausgerichtet ist.

Frage anzeigen

Frage

In welchem Verhältnis teilt der Schwerpunkt die Seitenhalbierenden?

Antwort anzeigen

Antwort

1:1

Frage anzeigen

Frage

Gibt es ein Dreieck, das keinen Schwerpunkt hat?

Antwort anzeigen

Antwort

Nein. Jedes Dreieck besitzt Seitenhalbierende und damit auch einen Schwerpunkt.

Frage anzeigen
Mehr zum Thema Schwerpunkt eines Dreiecks
60%

der Nutzer schaffen das Schwerpunkt eines Dreiecks Quiz nicht! Kannst du es schaffen?

Quiz starten

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Gerade angemeldet?

Ja
Nein, aber ich werde es gleich tun

Melde dich an für Notizen & Bearbeitung. 100% for free.