StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
Americas
Europe
Möchtest Du wissen, wie Du eine Parallele mit bestimmten Abstand konstruieren kannst? Schnapp Dir gerne einen Zirkel und ein Lineal und konstruiere gleich mit! In dieser Erklärung erfährst Du anhand einer Schritt-für-Schritt-Erklärung, wie Du eine Parallele in einem gewissen Abstand konstruieren kannst.Hast Du eine Gerade \(g\) gegeben und sollst dazu eine Parallele zeichnen, so benötigst Du verschiedene Konstruktionsschritte:Lot zur Geraden konstruieren.Den…
Entdecke über 200 Millionen kostenlose Materialien in unserer App
Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenMöchtest Du wissen, wie Du eine Parallele mit bestimmten Abstand konstruieren kannst? Schnapp Dir gerne einen Zirkel und ein Lineal und konstruiere gleich mit! In dieser Erklärung erfährst Du anhand einer Schritt-für-Schritt-Erklärung, wie Du eine Parallele in einem gewissen Abstand konstruieren kannst.
Hast Du eine Gerade \(g\) gegeben und sollst dazu eine Parallele zeichnen, so benötigst Du verschiedene Konstruktionsschritte:
Gegeben ist eine Gerade \(g\) und ein Abstand \(a\) mit \(a=2\,LE\). Zu dieser Geraden konstruiert Du zuerst ein Lot \(l\).
In der Erklärung „Lot fällen“ kannst Du nachlesen, wie Du ein Lot einzeichnen kannst.
Abb. 1 - Lot \(l\) zur Geraden \(g\) konstruieren.
Auf dem eben gezeichnetem Lot trägst Du den gegebenen Abstand \(a=2\,LE\) ab, indem Du Deinen Zirkel auf diesen Radius \(r=2\,LE\) einstellst und einen Kreis \(k\) um den Punkt Schnittpunkt \(P\) zeichnest.
Du kannst auch nur einen Teil des Kreises zeichnen, sodass Du weißt, wo der Kreis das Lot schneidet.
Der Schnittpunkt \(S\) des Lots \(l\) mit dem Kreis \(k\) hat genau den gegebenen Abstand \(a=2\,LE\) zur Geraden \(g\).
Abb. 2 - Abstand auf dem Lot eintragen.
Im nächsten Schritt konstruierst Du nun wieder ein Lot. Dieses soll senkrecht zum Lot \(l\) sein und durch den Punkt \(S\) verlaufen. Dazu zeichnest Du zuerst einen Kreis \(k_1\) um \(S\), wobei der Radius beliebig gewählt werden kann.
Abb. 3 - Kreis um \(S\) zeichnen.
Der Kreis \(k_1\) schneidet das Lot \(l\) in den Punkten \(S_1\) und \(S_2\). Um diese beiden Schnittpunkte zeichnest Du mit Deinem Zirkel je einen Kreis \(k_2\) und \(k_3\) mit dem Radius größer als die Hälfte der Strecke \(\overline{S_1S_2}\) wie in Abbildung \(4\).
Abb. 4 - Kreise um Schnittpunkte \(S_1\) und \(S_2\) zeichnen.
Die Kreise \(k_2\) und \(k_3\) schneiden sich in den Punkten \(S_3\) und \(S_4\). Durch diese Schnittpunkte zeichnest Du die Gerade \(p\) wie in Abbildung \(5\). Diese Gerade \(p\) ist das Lot zur Geraden \(l\) und entspricht der Parallelen mit dem Abstand \(a=2\,LE\).
Abb. 5 - Paralle \(p\) zeichnen.
Wenn eine Gerade \(g\) und ein Abstand \(a\) für eine Parallele \(p\) vorgegeben sind, kannst Du eben konstruierten Schritte noch einmal anhand der folgenden Abbildung \(6\) nachvollziehen und diese als Vorlage zur Konstruktion verwenden.
\(1.\) Lot konstruieren
\(2.\) gegebenen Abstand abtragen
\(3.\) Lot/Parallele \(p\) konstruieren
Abb. 6 - Vorlage Konstruktion Parallele.
Die folgende Aufgabe kannst Du nutzen, um das Konstruieren einer Parallelen mit einem bestimmten Abstand zu üben.
Aufgabe
Gegeben ist die folgende Straße, die als Gerade \(g\) dargestellt wird. In einem Abstand von \(a=5\,LE\) soll parallel zur Geraden \(g\) ein Fußweg als Gerade \(p\) eingezeichnet werden.
Hier entspricht \(1\,LE\) in der Zeichnung \(2\) Kästchen.
Abb. 7 - Gerade \(g\).
Lösung
Zuerst konstruierst Du ein Lot zur Geraden \(g\) mithilfe von Kreisen.
Abb. 8 - Lot zur Geraden \(g\).
Im nächsten Schritt trägst Du den Abstand von \(10\) Kästchen vom Schnittpunkt der Geraden \(g\) mit dem Lot auf dem Lot ab. Dazu zeichnest Du mit Deinem Zirkel einen Kreis mit \(5\,LE\) Radius um den Schnittpunkt von Gerade und Lot.
Abb. 9 - Kreis mit Radius \(r=5\,LE\).
Durch den Schnittpunkt des Kreises mit dem Lot konstruierst Du nun wieder ein Lot.
Abb. 10 - Lot/Parallele \(p\) konstruieren.
Diese so konstruierte Gerade \(p\) ist parallel zur Geraden \(g\) und hat einen Abstand von \(10\) Kästchen (\(5\,LE\)) zur Geraden \(g\).
Sieh Dir gerne die zugehörigen Karteikarten zur Konstruktion einer Parallelen mit bestimmten Abstand an.
Um eine Parallele zu konstruieren, zeichnest Du zunächst eine Gerade. Konstruiere zu dieser Geraden ein Lot mithilfe Deines Zirkels. Zu diesem Lot konstruierst Du nun wieder ein Lot. Das Lot zu Lot (also das zweite Lot) ist dann parallel zur gegebenen Geraden.
Gegeben ist eine Gerade. Konstruiere zu dieser Geraden ein Lot mithilfe Deines Zirkels. Zu diesem Lot konstruierst Du nun ein weiteres Lot. Dieses Lot ist parallel zur gegebenen Geraden.
Gegeben ist ein Punkt und eine Gerade. Der Punkt liegt nicht auf der Geraden. Zuerst zeichnest Du einen Kreis um den gegebenen Punkt, sodass dieser Kreis die Gerade schneidet. Zu den beiden Schnittpunkten des Kreises mit der Geraden konstruierst Du die Mittelsenkrechte. Diese verläuft auch durch den gegebenen Punkt. Jetzt konstruierst Du noch ein Lot zu dieser Mittelsenkrechten und durch den gegebenen Punkt. Dieses Lot ist parallel zur gegebenen Geraden und verläuft durch den gegebenen Punkt.
Parallelen findest Du zum Beispiel in geometrischen Formen wie dem Rechteck, dem Quadrat oder Raute. Auch Würfel haben Parallelen. Und in Deinem Alltag kannst Du auch Parallelen finden: Der Fußweg verläuft häufig parallel zur Straße. Die beiden Pfosten eines Tores sind parallel.
der Nutzer schaffen das Parallele mit bestimmten Abstand konstruieren Quiz nicht! Kannst du es schaffen?
Quiz startenWie möchtest du den Inhalt lernen?
94% der StudySmarter Nutzer erzielen bessere Noten.
Jetzt anmelden94% der StudySmarter Nutzer erzielen bessere Noten.
Jetzt anmeldenWie möchtest du den Inhalt lernen?
Kostenloser mathe Spickzettel
Alles was du zu . wissen musst. Perfekt zusammengefasst, sodass du es dir leicht merken kannst!
Sei rechtzeitig vorbereitet für deine Prüfungen.
Teste dein Wissen mit spielerischen Quizzes.
Erstelle und finde Karteikarten in Rekordzeit.
Erstelle die schönsten Notizen schneller als je zuvor.
Hab all deine Lermaterialien an einem Ort.
Lade unzählige Dokumente hoch und habe sie immer dabei.
Kenne deine Schwächen und Stärken.
Ziele Setze dir individuelle Ziele und sammle Punkte.
Nie wieder prokrastinieren mit unseren Lernerinnerungen.
Sammle Punkte und erreiche neue Levels beim Lernen.
Lass dir Karteikarten automatisch erstellen.
Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.
Melde dich an für Notizen & Bearbeitung. 100% for free.