Select your language

Suggested languages for you:
Log In Anmelden
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Die All-in-one Lernapp:

  • Karteikarten
  • NotizenNotes
  • ErklärungenExplanations
  • Lernpläne
  • Übungen
App nutzen

Schnittpunkt

Save Speichern
Print Drucken
Edit Bearbeiten
Melde dich an und nutze alle Funktionen. Jetzt anmelden
Schnittpunkt

Du hast vielleicht schon Funktionen gesehen, welche sich an bestimmten Punkten schneiden. Dieser Punkt, an dem sich die Funktionsgraphen schneiden, nennt sich Schnittpunkt.

Schnittpunkt einer Funktion mit der x und y-Achse

Funktionen, die Du in ein Koordinatensystem einzeichnest, schneiden oder berühren die Koordinatenachsen, also die x- und y-Achse, meist in einem oder mehreren Punkten.

Schnittpunkt lineare Funktion StudySmarterAbbildung 1: Nullstelle x und y-Achsenabschnitt y einer linearen Funktion f(x)

Die Funktion f(x) schneidet die x-Achse in einem Punkt Xf. Dieser Punkt wird Nullstelle genannt.

Der Schnittpunkt Yf zwischen Funktion f(x) und y-Achse wird Y-Achsenabschnitt genannt.

Die Nullstellen einer Funktion

Um wichtige Aufgaben der Analysis lösen zu können, ist die Berechnung der Nullstellen ein essentieller Bestandteil.

Eine Nullstelle einer Funktion ist eine Zahl a aus der Definitionsmenge der Funktion, für die gilt Schnittpunkt Definition Nullstelle StudySmarter.

Rein grafisch betrachtet, ist eine Nullstelle x der Schnittpunkt einer Funktion f(x) mit der x-Achse im Koordinatensystem.

Unterschiedliche Funktionen können eine unterschiedliche Anzahl von Nullstellen haben. Die maximal mögliche Anzahl von Nullstellen hängt von dem Grad der Funktion, also der Höhe des größten Exponenten der Funktion, ab. Eine Funktion ersten Grades kann maximal eine Nullstelle haben. Quadratische Funktionen (Funktionen zweiten Grades) haben maximal zwei Nullstellen.

Nullstellen von linearen Funktionen

Lineare Funktionen sind Funktionen ersten Grades.

Eine lineare Funktion ist durch folgende Funktionsgleichung definiert:

Schnittpunkt Definition lineare Funktion StudySmarter

Der Graph einer linearen Funktion ist eine Gerade.

Die Variable m gibt dabei die Steigung der Geraden an und die Variable n steht für den y-Achsenabschnitt.

Jede lineare Funktion, die nicht parallel zur x-Achse läuft, schneidet sie genau einmal. Somit hat jede lineare Funktion f(x) mit einer Steigung m, die ungleich null ist, genau eine Nullstelle x.

Schnittpunkt Nullstelle einer linearen Funktion StudySmarterAbbildung 2: Nullstelle x einer linearen Funktion f(x)

Um die Nullstellen einer Funktion ermitteln zu können, musst Du die Funktion gleich null setzen und nach x auflösen.

Schau Dir das mal in einem Beispiel an.

Aufgabe 1

Bestimme die Nullstellen der folgenden Funktion:

Lösung

1. Schritt: Funktion f(x) gleich null setzen.

2. Schritt: Gleichung nach x auflösen.

Die Funktion besitzt an der Stelle eine Nullstelle.

Nullstellen von quadratischen Funktionen

Quadratische Funktionen sind Funktionen zweiten Grades.

Die quadratische Funktion ist unter anderem durch folgende Funktionsgleichung definiert:

Schnittpunkt Definition quadratische Funktion StudySmarter

Der Graph einer quadratischen Funktion nennt sich Parabel.

Die Variable a gibt dabei an, wie breit bzw. schmal die Parabel ist. Die Unbekannte c steht für den y-Achsenabschnitt.

Parabeln können entweder keine, eine, oder zwei Nullstelle(n) haben. Die Anzahl ist abhängig von der Lage des Scheitelpunktes S.

Parabeln ohne Nullstellen

Eine Parabel hat keine Nullstelle, wenn sie die x-Achse nicht schneidet. Bei einer nach oben geöffneten Parabel liegt dann der Scheitelpunkt S oberhalb der x-Achse.

Schnittpunkt Parabel ohne Nullstelle StudySmarterAbbildung 3: Parabel der Funktion f(x) ohne Nullstellen

Parabeln mit einer Nullstelle

Eine Parabel mit einer Nullstelle berührt die x-Achse in nur einem Punkt. In so einem Fall ist die einzige Nullstelle x auch immer gleichzeitig der x-Wert des Scheitelpunktes S der Parabel.

Schnittpunkt Parabel mit einer Nullstelle StudySmarterAbbildung 4: Parabel der Funktion f(x) mit einer Nullstelle x

Parabeln mit zwei Nullstellen

Eine Parabel hat zwei Nullstellen x1 und x2, wenn die Parabel die x-Achse schneidet und der Scheitelpunkt S bei einer nach oben geöffneten Parabel unterhalb der x-Achse liegt.

Schnittpunkt Parabel mit zwei Nullstellen StudySmarterAbbildung 5: Parabel der Funktion f(x) mit zwei Nullstellen x1 und x2

Wenn Du mehr über Nullstellen berechnen erfahren möchtest, kannst Du Dir die Erklärung "Nullstelle" anschauen.

Der y-Achsenabschnitt

Der y-Achsenabschnitt einer Funktion ist ebenfalls ein wichtiger Bestandteil der Analysis.

Der y-Achsenabschnitt ist der Schnittpunkt einer Funktion f(x) mit der y-Achse.

Für eine Funktion f(x) entspricht der y-Achsenabschnitt der folgenden Gleichung:

Schnittpunkt Definition y-Achsenabschnitt StudySmarter

Y-Achsenabschnitt bei linearen Funktionen

Jede lineare Funktion, die nicht parallel zur y-Achse ist, schneidet diese genau einmal. In der allgemeinen Funktionsgleichung linearer Funktionen gibt der Buchstabe n den y-Achsenabschnitt direkt an.

Schnittpunkt y-Achsenabschnitt einer linearen Funktion StudySmarterAbbildung 6: Y-Achsenabschnitt y0 einer linearen Funktion f(x)

Da sich der y-Achsenabschnitt direkt auf der y-Achse befindet, ist der x-Wert von diesem Punkt gleich null. Um deny-Achsenabschnitt zu berechnen, setzt Du deshalb in die Funktion f(x) für x eine Null ein.

Schau Dir das mal in einem Beispiel an.

Aufgabe 2

Bestimme den y-Achsenabschnitt der folgenden Funktion:

Lösung

Setze also für x eine 0 in die Funktionsgleichung ein.

Der y-Achsenabschnitt der Funktion liegt bei .

Y-Achsenabschnitt bei quadratischen Funktionen

Jede quadratische Funktion schneidet die y-Achse in genau einem Punkt y0. In der allgemeinen Funktionsgleichung für quadratische Funktionen gibt die Variable c den y-Achsenabschnitt direkt an.

Schnittpunkt y-Achsenabschnitt einer Parabel StudySmarterAbbildung 7: Y-Achsenabschnitt y0 einer quadratischen Funktion f(x)

Wenn Du mehr über die Berechnung des y-Achsenabschnitts erfahren möchtest, kannst Du Dir die dazugehörige Erklärung anschauen.

Schnittpunkt zweier Funktionen

Neben den Schnittpunkten mit den Koordinatenachsen können Funktionen auch Schnittpunkte mit anderen Funktionen haben.

Der Schnittpunkt S zweier Funktionen f(x) und g(x) ist der Punkt, an dem zwei Graphen sich innerhalb eines Koordinatensystems treffen und überschneiden. Beide Funktionen f(x) und g(x) besitzen an dieser Stelle den gleichen x- und y-Wert.

Die Anzahl der Schnittpunkte hängt dabei von der Art der Funktionen ab. Deshalb kannst Du Dir die Schnittpunkte bestimmter Funktionsarten in den folgenden Abschnitten genauer anschauen. Außerdem lernst Du, wie Du Schnittpunkte berechnen kannst, ohne dabei die Funktionsgraphen gesehen zu haben.

Schnittpunkt zweier Geraden (lineare Funktion)

Zwischen zwei Geraden gibt es drei verschiedene Möglichkeiten, wie viele Schnittpunkte es geben kann:

Zwei Geraden können sich entweder in einem Punkt, in keinem Punkt oder in unendlich vielen Punkten schneiden.

Zwei Geraden schneiden sich in einem Punkt

Alle Geraden, die eine unterschiedliche Steigung m haben, schneiden sich einmal in einem Punkt S.

Schnittpunkt zweier Geraden StudySmarterAbbildung 8: Schnittpunkt S zweier Geraden f(x) und h(x)

Parallel verlaufende Geraden

Haben Geraden die gleiche Steigung m, liegen sie parallel zueinander. Das führt dann dazu, dass sie keinen Schnittpunkt S haben.

Schnittpunkt Geraden ohne Schnittpunkt StudySmarterAbbildung 9: Geraden h(x) und f(x) ohne Schnittpunkt

Geraden schneiden sich in unendlich vielen Punkten

Geraden, die nicht nur die gleiche Steigung, sondern auch den gleichen y-Achsenabschnitt haben, sind identisch und liegen somit aufeinander. Das führt dazu, dass sie unendlich viele Schnittpunkte haben.

Schnittpunkt Geraden mit unendlichen Schnittpunkten StudySmarterAbbildung 10: Geraden f(x) und h(x) mit unendlichen Schnittpunkten

Schnittpunkte zwischen linearen Funktionen berechnen

Um den Schnittpunkt von zwei Funktionen zu berechnen, kannst Du Dich immer nach folgendem Ablauf richten.

  • 1. Schritt: Gleichsetzen der beiden Funktionen
  • 2.Schritt: Auflösen der Gleichung nach x
  • 3.Schritt: Einsetzen des x-Wertes in eine der beiden Funktionen

Dabei unterscheidet sich das Vorgehen auch nicht bei Funktionen mit einem höheren Grad, wie z. B. bei quadratischen Funktionen.

Schau Dir das mal in einem Beispiel an.

Aufgabe 3

Berechne die Schnittpunkte der folgenden Funktionen.

Lösung

1. Schritt: Gleichsetzen der Funktionen

Im ersten Schritt setzt Du die Funktionen f(x) und g(x) miteinander gleich. Dabei fasst Du die entstandene Gleichung immer weiter zusammen durch Termumformungen und löst sie nach x auf.

2. Schritt: Auflösen der Gleichung nach x:

3. Schritt: Einsetzen des x-Wertes in eine der Funktionen

Im letzten Schritt setzt Du die Lösung, die Du für x erhalten hast, in eine der Funktionsgleichung, also f(x) oder g(x) ein. Welche Du dabei wählst, ist egal, denn beide Funktionen haben denselben Schnittpunkt S.

Der Schnittpunkt der beiden Funktionen befindet sich an dem Punkt .

Wenn Du auch wissen möchtest, wie der Schnittpunkt zweier Geraden berechnet wird, dann kannst Du Dir die Erklärung "Schnittpunkt zweier Geraden" anschauen.

Schnittwinkel von Geraden berechnen

Im diesem Abschnitt geht es um den Winkel, in dem sich zwei Funktionen miteinander schneiden.

Wenn sich zwei Geraden schneiden, bilden sie einen sogenannten Schnittwinkel. Dieser lässt sich mit Hilfe von einer Formel berechnen, wobei Du stets die Steigung der Funktionen benötigst. Wenn zwei lineare Funktionen dieselbe Steigung haben, können sie sich nicht schneiden und dementsprechend gibt es auch keinen Schnittwinkel.

Um die Schnittwinkel berechnen zu können, kannst Du diese Formel anwenden.

Formel zur Berechnung von Schnittwinkeln zweier Geraden:

Schnittpunkt Schnittwinkel StudySmarter

Dabei sind m1 und m2 die Steigungen der Geraden.

Aufgelöst nach dem Winkel lautet die Formel:

Schnittpunkt Schnittwinkel StudySmarter

Du musst den Schnittwinkel in Betragsstriche setzen, da er nur positive Werte annehmen kann!

Du kannst auch den Schnittwinkel zwischen einer Gerade und den beiden Koordinatenachsen berechnen:

Der Winkel zwischen Gerade und x-Achse lässt sich berechnen durch die Formel

Schnittpunkt Schnittwinkel StudySmarter

Dabei ist m die Steigung der Geraden.

Der Winkel zwischen Gerade und y-Achse lässt sich berechnen durch die Formel

Schnittpunkt Schnittwinkel berechnen StudySmarter

Schnittpunkt quadratische und lineare Funktion

Eine Gerade und eine Parabel können sich in einem Punkt S, in zwei Punkten S1 und S2 oder in keinem Punkt schneiden.

Gerade und Parabel schneiden sich in einem Punkt

Bei einer Geraden, die eine Parabel in nur einem Punkt schneidet, handelt es sich um eine sogenannte Tangente. Sie berührt die Parabel sozusagen in einem Punkt.

Schnittpunkt Gerade und Parabel StudySmarterAbbildung 11: Schnittpunkt S zwischen Parabel f(x) und Geraden g(x)

Gerade und Parabel schneiden sich in zwei Punkten

Bei einer Geraden, die eine Parabel in zwei Punkten schneidet, handelt es sich um eine sogenannte Sekante.

Schnittpunkt Gerade und Parabel StudySmarterAbbildung 12: Zwei Schnittpunkte S1 und S2 zwischen Parabel f(x) und Geraden g(x)

Gerade und Parabel schneiden sich in keinem Punkt

Eine Gerade, die eine Parabel in keinem Punkt schneidet, wird Passante genannt.

Schnittpunkt Gerade und Parabel StudySmarterAbbildung 13: Parabel f(x) und Gerade g(x) ohne Schnittpunkte

Auch zum Schnittpunkt von einer Parabel und einer Geraden gibt es eine ausführliche Erklärung auf StudySmarter. Diese heißt "Schnittpunkte Parabel Gerade".

Schnittpunkte zwischen linearer und quadratischer Funktion berechnen

Hier gehst Du genau so vor, wie bei der Berechnung des Schnittpunktes zwischen zwei linearen Funktionen:

  • Gleichsetzten der Funktionen
  • Auflösen nach x
  • Einsetzten der x - Werte in eine der gegebenen Funktionen

Wie Du bereits gelernt hast, können zwischen Gerade und Parabel bis zu zwei Schnittpunkte existieren. Demnach kann es sein, dass Du beim zweiten Schritt, also dem Auflösen nach x, zwei Lösungen für x erhältst. Da es sich hier um eine Funktion zweiten Grades handelt, bietet sich bei der Berechnung für die x-Werte die pq-Formel oder die Mitternachtsformel an.

Zur Erinnerung:

Die pq-Formel lautet: Schnittpunkt pq-Formel StudySmarter

Die Mitternachtsformel lautet: Schnittpunkt Mitternachtsformel StudySmarter

Schau Dir das mal in einem Beispiel an.

Aufgabe 4

Berechne die Schnittpunkte der folgenden Funktionen:

Lösung

1. Schritt: Funktionen gleichsetzen und zusammenfassen

Bei Funktionen höheren Grades ist es sinnvoll, die Gleichung, die aus dem Gleichsetzen entsteht, möglichst zu vereinfachen bzw. zusammenzufassen und gleich null zu setzen, sodass eine neue Funktion entsteht.

Damit erhältst Du eine neue Funktion, aus der Du jetzt die Nullstellen bestimmen kannst.

2. Schritt: Nullstellen ermitteln, also Gleichung nach x auflösen

Hier bietet es sich an, die pq-Formel zu benutzen. Alternativ kannst Du auch die Mitternachtsformel verwenden.

3. Schritt: x-Werte in eine der gegebenen Funktionen einsetzen

Als Probe, ob Du richtig gerechnet hast, kannst Du den x-Wert auch in die andere Funktion f(x) einsetzen und schauen, ob dasselbe Ergebnis dabei herauskommt.

Die Funktionen schneiden sich in den Punkten und

Schnittpunkte zwischen zwei quadratischen Funktionen berechnen

Quadratische Funktionen können sich in keinem Punkt, einem Punkt oder zwei Punkten schneiden.

Ein Schnittpunkt zwischen quadratischen Funktionen

Schnittpunkt quadratische Funktionen StudySmarterAbbildung 14: Zwei Parabeln f(x) und g(x) mit einem Schnittpunkt S

Zwei Schnittpunkte zwischen quadratischen Funktionen

Schnittpunkt quadratische Funktionen StudySmarterAbbildung 15: Zwei Parabeln f(x) und g(x) mit zwei Schnittpunkten S1 und S2

Kein Schnittpunkt zwischen zwei Parabeln

Schnittpunkt Parabeln StudySmarterAbbildung 16: Zwei Parabeln f(x) und g(x) ohne Schnittpunkte

Schnittpunkt zwischen zwei quadratischen Funktionen berechnen

Da sich das Vorgehen hier nicht von den anderen Beispielen unterscheidet, kannst Du Dir die Berechnung in der folgenden Aufgabe anschauen.

Aufgabe 5

Um die Schnittpunkte zwischen zwei quadratischen Funktionen zu berechnen, gehst Du genau so vor, wie in Aufgabe 4.

Berechne die Schnittpunkte der folgenden Funktionen:

Lösung

1. Schritt: Funktionen gleichsetzen und vereinfachen

2. Schritt: Gleichung nach x auflösen (Nullstellen ermitteln)

3. Schritt: x-Werte in eine der gegebenen Funktionen einsetzen

Die Funktionen schneiden sich in dem Punkt .

Schnittpunkte zwischen sonstigen Polynomfunktionen

Neben linearen und quadratischen Funktionen können auch Polynome höheren Grades Schnittpunkte mit anderen Graphen haben. An dem Grad der Funktion kannst Du dabei die maximale Anzahl der Schnittpunkte ablesen.

Die maximal mögliche Anzahl der Schnittpunkte zwischen Polynomfunktionen entspricht immer dem Grad (Unbekannte mit höchstem Exponent) der Funktion.

Eine Funktion zweiten Grades kann somit beispielsweise mit einer Geraden maximal 2 Schnittpunkte haben. Eine Funktion dritten Grades kann eine Gerade höchstens 3 Mal schneiden, usw.

Eine Funktion dritten Gerades wird durch folgende Funktionsgleichung definiert:

Schnittpunkt Funktion dritten Grades StudySmarter

Der Faktor a gibt dabei an, wie schmal bzw. breit die Funktion ist. Die Unbekannte d steht für den y-Achsenabschnitt.

Hier kannst Du zum Beispiel sehen, wie sich eine Funktion dritten Grades mit einer linearen Funktion schneidet.

Schnittpunkt Polynom und Gerade StudySmarterAbbildung 17: Zwei Schnittpunkte S1 und S2 zwischen Funktion f(x) und Gerade g(x)

Schnittpunkt zwischen Polynomfunktionen berechnen

Die Berechnung der Schnittpunkte von beispielsweise einer Funktion dritten Grades folgt demselben Ablauf, dem Du bei den anderen Schnittpunktberechnungen auch gefolgt bist. Einzig das Auflösen der Gleichung nach x im zweiten Schritt kann sich wegen des höheren Grades von den anderen Rechnungen unterscheiden. Schau Dir dazu am besten das Beispiel an.

Aufgabe 6

Berechne die Schnittpunkte der folgenden Funktionen

Lösung

1. Schritt: Funktionen gleichsetzen und vereinfachen

2. Schritt: Auflösen der Gleichung nach x (Nullstellen bestimmen)

Da an dieser Stelle ein Polynom dritten Gerades vorliegt, kannst Du nicht einfach die pq-Formel anwenden. Hier bietet es sich an, bei der Gleichung zunächst ein x auszuklammern.

Ist ein Produkt gleich null, so muss mindestens einer der Faktoren gleich null sein.

Demnach gilt Folgendes:

Jetzt kann der zweite Term mit der pq-Formel berechnet werden.

Wie Du sehen kannst, stimmen die Werte für x2 und x3 überein. Daraus kannst Du schließen, dass zwischen den Funktionen f(x) und g(x) nur zwei Schnittpunkte existieren. Diese sind folgende:

Das Ausklammern von x mit anschließender Anwendung der pq-Formel funktioniert nicht immer, um die Nullstellen von einer Funktion dritten Grades zu bestimmen. Eine weitere Möglichkeit dafür ist die Polynomdivision. Wenn Du wissen möchtest, wie Du eine Polynomdivision durchführen kannst, schau Dir gerne den Artikel dazu an.

3. Schritt: x-Werte in eine Funktion einsetzen

In welche Funktion Du die x-Werte für den jeweiligen y-Wert einsetzt, ist eigentlich egal. Zu empfehlen ist, die Funktion zu nehmen, die weniger komplex ist. Hier ist das also die lineare Funktion g(x).

Du setzt also nach einander die Werte x1 und x2 in die Funktion g(x) ein.

Die Funktionen schneiden sich in den Punkten und .

Schnittpunkte zwischen anderen Funktionen

Die maximale Anzahl an Schnittpunkten hängt immer von der Art der Funktionen ab. Im Allgemeinen gibt es aber keine Höchstgrenze für Schnittpunkte. Beispielsweise können eine konstante Funktion und eine Sinus- oder Kosinusfunktion unendlich viele Schnittpunkte haben, auch wenn sie nicht identisch sind.

Wenn Du mehr über Schnittpunkte zweier Funktionen lernen möchtest, dann kannst Du Dir den Artikel "Schnittpunkt zweier Funktionen" anschauen.

Schnittpunkt – Das Wichtigste

  • Eine Funktion f(x) kann sich sowohl mit den Koordinatenachsen schneiden als auch mit anderen Funktionen.

  • Schnittpunkte einer Funktion f(x) mit der x-Achse nennen sich Nullstellen. Sie werden wie folgt berechnet: Schnittpunkt Nullstellen StudySmarter.

  • Der Schnittpunkt einer Funktion f(x) mit der y-Achse wird y-Achsenabschnitt genannt. Dieser wird berechnet, indem für x in die Funktion null eingesetzt wird, also Schnittpunkt y-Achsenabschnitt StudySmarter.

  • Der Schnittpunkt S zweier Funktionen f(x) und g(x) ist der Punkt, an dem zwei Graphen sich innerhalb eines Koordinatensystems treffen und überschneiden. Beide Funktionen f(x) und g(x) besitzen an dieser Stelle den gleichen x- und y-Wert.

  • Die maximal mögliche Anzahl an Schnittpunkten zweier Funktionen entspricht dem Grad der Funktion. Demnach haben zwei lineare Funktionen maximal einen Schnittpunkt, zwei quadratische Funktionen bis zu zwei Schnittpunkte, usw. .

  • Um den Schnittpunkt von zwei Funktionen zu berechnen, kannst Du Dich immer nach folgendem Ablauf richten:

    • 1. Schritt: Gleichsetzen der beiden Funktionen
    • 2. Schritt: Auflösen der Gleichung nach x
    • 3.Schritt: Einsetzen des x-Wertes in eine der beiden Funktionen.
  • Die Formel zur Berechnung des Schnittwinkels lautet wie folgt: Schnittpunkt Schnittwinkel StudySmarter.

Häufig gestellte Fragen zum Thema Schnittpunkt

Zwei Geraden haben keinen Schnittpunkt, wenn sie parallel sind, also die gleiche Steigung m besitzen, jedoch dabei einen unterschiedlichen y-Achsenabschnitt n haben.

Um Schnittpunkte zweier Graphen zu berechnen, musst Du die beiden Funktionen f(x) und g(x) gleichsetzen und die Gleichung nach x auflösen. Anschließend setzt Du die ermittelten x-Werte in eine der Funktionen ein und erhältst somit die y-Werte.

Der Schnittpunkt einer linearen Funktion f(x) mit einer anderen linearen Funktion g(x) ist der Punkt S, an dem sich die beiden Geraden schneiden. Außerdem kann die Funktion f(x) auch einen Schnittpunkt mit der x-Achse (Nullstelle) und mit der y-Achse (y-Achsenabschnitt) haben.

Um Schnittpunkte von zwei Parabeln zu berechnen, musst Du die beiden Funktionen f(x) und g(x) gleichsetzen und die Gleichung z.B. durch die pq-Formel nach x auflösen. Anschließend setzt Du die ermittelten x-Werte in eine der Funktionen f(x) oder g(x) ein und erhältst somit die y-Werte der Schnittpunkte.

Finales Schnittpunkt Quiz

Frage

Beschreibe, was laut Definition grafisch und rechnerisch für die Nullstelle gilt.

Antwort anzeigen

Antwort

Graphisch: Die Nullstelle bezeichnet den x-Wert des Schnittpunktes mit der x-Achse.


Rechnerisch: An der Nullstelle einer Funktion gilt f(x)=0.

Frage anzeigen

Frage

Zeige den Unterschied zwischen der Nullstelle und dem y-Achsenabschnitt auf.

Antwort anzeigen

Antwort

Die Nullstelle ist der Schnittpunkt mit der x-Achse.

Es kann keine, eine, mehrere oder unendlich viele Nullstellen geben.

Am Schnittpunkt mit der x-Achse ist der y-Wert immer Null.


Der y-Achsenabschnitt ist der Schnittpunkt mit der y-Achse.

Es gibt maximal einen y-Achsenabschnitt

Am Schnittpunkt mit der y-Achse ist der x-Wert immer Null


Frage anzeigen

Frage

a

Antwort anzeigen

Antwort

b

Frage anzeigen

Frage

Schildere das allgemeine Vorgehen zum Berechnen der Nullstellen.

Antwort anzeigen

Antwort

  1. Man setzt den Funktionsterm gleich Null (f(x)=0)
  2. Danach stellt man die Funktionsgleichung nach x um, um die Nullstelle zu bekommen.
  3. Die x-Werte müssen zuletzt noch in Punkte umgewandelt werden
Frage anzeigen

Frage

Gib drei Optionen an, um die Nullstellen einer quadratischen Funktion zu berechnen.

Antwort anzeigen

Antwort

  1. Mitternachtsformel
  2. p/g-Formel
  3. Äquivalenzumformungen 
  4. Ausklammern


Es reicht hier natürlich, wenn du 3 dieser Optionen angibst.

Frage anzeigen

Frage

Ganzrationale Funktionen kann man auf drei Arten lösen. Welche gibt es neben dem Ausklammern noch?

Antwort anzeigen

Antwort

  1. Substitution
  2. Polynomdivision
Frage anzeigen

Frage

Beschreibe wie es sich bei der e-Funktion mit Nullstellen verhält.

Antwort anzeigen

Antwort

Die e-Funktion besitzt keine Nullstelle.


Enthält der Funktionsterm neben e noch weitere Ausdrücke (wie ein Polynom), kann es sein, dass aufgrund dessen doch Nullstellen vorhanden sind.

Frage anzeigen

Frage

Zu welchen Verfahren gehört das Newton-Verfahren zur Nullstellen-Annäherung?

Antwort anzeigen

Antwort

Es gehört zu den Iterationsverfahren.

Frage anzeigen

Frage

Wann haben zwei Geraden keinen Schnittpunkt?

Antwort anzeigen

Antwort

Zwei Geraden haben keinen Schnittpunkt, wenn sie die gleiche Steigung besitzen.

Frage anzeigen

Frage

Wie viele Schnittpunkte kann ein Polynom 3.Grades maximal besitzen?

Antwort anzeigen

Antwort

Ein Polynom 3.Grades kann maximal 3 Schnittpunkte besitzen.

Frage anzeigen

Frage

Wie berechnet man die Schnittpunkte von zwei Geraden?

Antwort anzeigen

Antwort

1. Funktionen gleichsetzen

2. nach x auflösen

3. x-Wert in eine Funktion einsetzen, um y-Wert zu erhalten


Frage anzeigen

Frage

Was ist ein Schnittpunkt?

Antwort anzeigen

Antwort

Bei einem Schnittpunkt schneiden sich zwei Funktionen an einem bestimmten Punkt miteinander. Sie dürfen dabei nicht die gleiche Steigung besitzen.

Frage anzeigen

Frage

Wie berechnet man die Nullstellen von dem Schnittpunkt zwischen einer Polynomfunktion und einer Geraden?

Antwort anzeigen

Antwort

Um die Nullstellen zu berechnen muss man auf die p/q-Formel oder Polynomdivision zurückgreifen.

Frage anzeigen

Frage

Wodurch zeichnet sich ein Schnittpunkt P zweier Funktionen f(x) und g(x) aus?

Antwort anzeigen

Antwort

Ein Schnittpunkt P zweier Funktionen f(x) und g(x) zeichnet sich dadurch aus, dass sie sich in diesem Punkt schneiden. Die beiden Funktionen haben an dieser Stelle den gleichen x- und y-Wert.

Frage anzeigen

Frage

Wie berechnest Du einen Schnittpunkt P zweier Funktionen?

Antwort anzeigen

Antwort

  1. Die gegebenen Funktionen g(x) und f(x) gleichsetzen.
  2. Nach x auflösen.
  3. x in die Ausgangsfunktionen einsetzen und y berechnen. Wenn beide Funktionen denselben y-Wert in einem Schnittpunkt P haben, hast du die richtige Lösung.
Frage anzeigen

Frage

Wie viele Schnittpunkte P können zwei lineare Funktionen f(x) und g(x) auf einmal haben?

Antwort anzeigen

Antwort

Sie können einen Schnittpunkt P haben.

Frage anzeigen

Frage

Wenn zwei Geraden f(x) und g(x) unendlich viele Schnittpunkte P haben, wie liegen sie dann zueinander?

Antwort anzeigen

Antwort

Zwei Geraden mit unendlich vielen Schnittpunkten P werden identisch genannt.

Frage anzeigen

Frage

Wenn Zwei Geraden f(x) und g(x) keinen Schnittpunkt P haben, wie liegen sie dann zueinander?

Antwort anzeigen

Antwort

Zwei Geraden f(x) und g(x) haben keinen Schnittpunkt P, wenn sie parallel sind und sie die gleiche Steigung haben.

Frage anzeigen

Frage

Bei einem Schnittpunkt P zweier quadratischer Funktionen f(x) und g(x), wird in der Regel ein Verfahren in der Gleichsetzung angewendet. Welches Verfahren ist gemeint?

Antwort anzeigen

Antwort

Beim Gleichsetzen zweier quadratischer Funktionen f(x) und g(x) wird oft das Verfahren der pq-Formel verwendet.

Frage anzeigen

Frage

Vervollständige den Satz!

Bei einer Funktion f(x) dritten Grades verwendest Du beim Gleichsetzen vor allem...

Antwort anzeigen

Antwort

... das Ausklammern und die pq-Formel.

Frage anzeigen

Frage

Vervollständige den Satz.

Jede Zahl mit einer Null im Exponenten ist ausmultipliziert ...

Antwort anzeigen

Antwort

... die Zahl 1.

Frage anzeigen

Frage

Bei einer Exponentialfunktion f(x) steht das x immer im Exponenten. In diesem Fall brauchst Du beim Gleichsetzen ein Verfahren, um das x aus dem Exponenten zu holen. Was ist damit gemeint?

Antwort anzeigen

Antwort

Beim Gleichsetzen zweier Exponentialfunktionen f(x) und g(x) verwendest Du in der Regel das Ziehen des Logarithmus.

Frage anzeigen

Frage

Was ist eine Funktion?

Antwort anzeigen

Antwort

Eine Funktion f ist eine Zuordnung, bei der jedem Element x der Definitionsmenge genau ein Element y der Wertemenge zugeordnet wird.

Frage anzeigen

Frage

Was ist ein Schnittpunkt von Funktionen?

Antwort anzeigen

Antwort

Der Schnittpunkt P zweier Funktionen f(x) und g(x) ist der Punkt, an dem zwei Graphen sich innerhalb eines Koordinatensystems treffen und schneiden. Beide Funktionen besitzen an dieser Stelle den gleichen x- und y-Wert.


 

Frage anzeigen

Frage

Wie berechnest Du einen Schnittwinkel?

Antwort anzeigen

Antwort

  1. Berechne den Schnittpunkt der Funktionen, wenn nicht gegeben.
  2. Leite beide Funktionen im Schnittpunkt ab. Du erhältst die Steigung der Tangenten, genauer gesagt der Funktion an der Stelle.
  3. Setze die Steigungen in die Formel ein und berechne den Schnittwinkel.
Frage anzeigen

Frage

Wie wird der Steigungswinkel auch genannt?

Antwort anzeigen

Antwort

Neigungswinkel

Frage anzeigen

Frage

Wann müssen Steigungswinkel addiert werden?

Antwort anzeigen

Antwort

Wenn der Schnittwinkel über die waagerechte Gerade durch den Schnittpunkt verläuft, müssen die Steigungswinkel addiert werden.

Frage anzeigen

Frage

Wann müssen Steigungswinkel subtrahiert werden?

Antwort anzeigen

Antwort

Wenn der Schnittwinkel nicht über die waagerechte Gerade durch den Schnittpunkt verläuft, müssen die Steigungswinkel subtrahiert werden.

Frage anzeigen

Frage

Wann musst Du für die Schnittwinkelberechnung vorher keinen Schnittpunkt berechnen?

Antwort anzeigen

Antwort

Wenn es sich bei beiden Funktionen um lineare Funktionen handelt, muss der Schnittpunkt nicht berechnet werden. Bei linearen Funktionen ändert sich im Gegensatz zu anderen Funktionen der Anstieg nicht.

Frage anzeigen
60%

der Nutzer schaffen das Schnittpunkt Quiz nicht! Kannst du es schaffen?

Quiz starten

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Gerade angemeldet?

Ja
Nein, aber ich werde es gleich tun

Melde dich an für Notizen & Bearbeitung. 100% for free.