Winkel zwischen zwei Geraden im Raum
Auch im dreidimensionalen Raum lassen sich Winkel berechnen. Insbesondere kannst Du den Schnittwinkel \(\alpha\) zwischen zwei Geraden, Ebenen oder Vektoren berechnen. Auch den Schnittwinkel \(\alpha\) zwischen einer Geraden und einer Ebenen kannst Du mithilfe der folgenden Formeln berechnen.
Den Schnittwinkel \(\alpha\) zwischen einer Ebene \(E\) und einer Geraden \(g\) berechnest Du mithilfe des Sinus.
Es gilt: \[\sin(\alpha)=\frac{|\vec{a}\cdot \vec{n}|}{|\vec{a}|\cdot|\vec{n}|}\]
Dabei ist \(\vec{a}\) der Richtungsvektor der Geraden und \(\vec{n}\) der Normalenvektor der Ebene.
Den Schnittwinkel \(\alpha\) zwischen zwei sich schneidenden Ebenen oder zwei sich schneidenden Geraden oder Vektoren berechnest Du mithilfe des Cosinus.
Es gilt: \[\cos(\alpha)=\frac{|\vec{n_1}\cdot \vec{n_2}|}{|\vec{n_1}|\cdot|\vec{n_2}|}\]
Wobei \(\vec{n_1}\) und \(\vec{n_2}\) die Normalenvektoren der Ebenen sind. Beziehungsweise ist \(\vec{n_1}\) der Richtungsvektor, der einen Geraden und \(\vec{n_2}\) der Richtungsvektor, der anderen Geraden.
Den Schnittwinkel von zwei Vektoren kannst Du mit bis zu \(180^\circ\) angeben. Wenn zwei Geraden oder Ebenen sich schneiden, dann gibst Du den Schnittwinkel mit \(\leq90^\circ\) an. Wenn Du einen größeren Schnittwinkel für sich schneidende Geraden oder Ebenen berechnet hast, musst Du den eigentlichen Winkel über den Nebenwinkel berechnen.
Du kannst Dir merken, dass der Winkel zwischen gleichen Objekten wird über den Cosinus berechnet. Zwischen unterschiedlichen Objekten wird der Winkel über den Sinus berechnet.
Mehr zu der Winkelberechnung im dreidimensionalen Raum erfährst Du in der Erklärung „Schnittwinkel berechnen“.