Select your language

Suggested languages for you:
Log In Anmelden
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Die All-in-one Lernapp:

  • Karteikarten
  • NotizenNotes
  • ErklärungenExplanations
  • Lernpläne
  • Übungen
App nutzen

Gleichung höheren Grades

Save Speichern
Print Drucken
Edit Bearbeiten
Melde dich an und nutze alle Funktionen. Jetzt anmelden
Gleichung höheren Grades

Du hast bestimmt schon einmal einen Skater beim Fahren auf einer Halfpipe beobachtet. Wie der Name schon sagt, hat eine Halfpipe in etwa die Form einer halben Röhre. Aber was hat das Ganze jetzt mit Gleichungen höheren Grades zu tun? Eine solche Halfpipe kann näherungsweise durch die Funktion höheren Grades f(x) beschrieben werden.

Gleichung höheren Grades Beispiel Halfpipe StudySmarterAbbildung 1: Beschreibung einer Halfpipe durch eine Funktion

Möchtest Du wissen, wie breit die Halfpipe ist, setzt Du die Funktion gleich 0 und erhältst eine Gleichung höheren Grades. Wie Du eine solche Gleichung lösen kannst, erfährst Du hier.

Lösen von Gleichungen höheren Grades – Grundlagenwissen

Das Lösen von Gleichungen ist ein essenzieller Bestandteil der Algebra sowie der Analysis. Möchtest Du etwa die Nullstellen einer Funktion berechnen, setzt Du die Funktion gleich null und erhältst damit eine Gleichung, die zu lösen ist. Dabei werden Gleichungen an ihrem Grad unterschieden.

Lösen von quadratischen Gleichungen

Um Gleichungen höheren Grades lösen zu können, ist es unerlässlich, das Lösen von quadratischen Gleichungen zu beherrschen.

Eine quadratische Gleichung hat den Grad 2, das heißt der höchste Exponent der Variable x ist die 2. Somit enthalten quadratische Gleichungen immer ein quadratisches Glied x2.

Die allgemeine Form so einer Gleichung lautet:

Gleichung höheren Grades quadratische Gleichung StudySmarter

Um eine solche Gleichung zu lösen, muss sie nach der Variable x aufgelöst werden.

Alle Werte, die in eine Gleichung für die Variable x eingesetzt ein wahres Ergebnis liefern, heißen Lösung L der Gleichung. Diese können zu einer Lösungsmenge zusammengefasst werden.

Zu den gängigen Lösungsmethoden für quadratische Gleichungen gehören die p-q-Formel und die Mitternachtsformel.

Die p-q-Formel lautet wie folgt:

Gleichung höheren Grades Definition pq-Formel StudySmarter

Die Mitternachtsformel lautet:

Gleichung höheren Grades Definition Mitternachtsformel StudySmarter

Das folgende Beispiel zeigt Dir, wie Du die Mitternachtsformel anwenden kannst.

Gesucht ist die Lösung der folgenden quadratischen Gleichung:

Setze dazu in der Mitternachtsformel und ein.

Daraus ergeben sich dann zwei Lösungen.

Die Lösungsmenge ist somit:

Wenn Du Dein Wissen zum Lösen quadratischer Gleichungen noch einmal auffrischen möchtest, schau Dir dazu gerne die Erklärung "quadratische Gleichungen lösen" an.

Gleichungen höheren Grades – Definition

In dem Fall, dass Du eine quadratische Gleichung vorliegen hast, hast Du also eine nützliche Formel zur Bestimmung der Lösungen zur Hand. Wie sieht es jedoch mit algebraischen Gleichungen höheren Grades aus?

Gleichungen mit einem Grad von 3 oder höher heißen Gleichungen höheren Grades.

In der Mathematik werden sie im Allgemeinen wie folgt beschrieben:

Gleichung höheren Grades Definition StudySmarter

  • Die Vorfaktoren bzw. Koeffizienten ai können dabei jede reelle Zahl annehmen
  • n, also die Zahl im Exponenten, steht hier für alle natürlichen Zahlen größer als 2
  • Der Koeffizient a0 wird als konstantes Glied bezeichnet.

Das Lösen von algebraischen Gleichungen höheren Grades basiert immer auf dem Vereinfachen der Gleichung. Du versuchst also den Grad der Gleichung möglichst zu verringern, sodass letztlich eine quadratische Gleichung vorliegt, die Du dann mithilfe von bekannten Methoden wie das Wurzelziehen oder der Mitternachtsformel lösen kannst. Dabei gibt es drei verschiedene Möglichkeiten: das Ausklammern, die Substitution und die Polynomdivision.

Gleichung höheren Grades durch Ausklammern lösen

Beim Ausklammern bzw. Herausheben geht es darum, Gleichungen höheren Grades zu vereinfachen, indem aus einer Gleichung, zwei Gleichungen gemacht werden. Das Ausklammern kannst Du allerdings nur bei bestimmten Gleichungen anwenden.

Gleichungen höheren Grades ohne konstantes Glied a0, also Gleichungen der Form

Gleichung höheren Grades Form ohne konstantes Glied beim Ausklammern StudySmarter,

können mithilfe des Ausklammerns gelöst werden.

Beim Ausklammern wird eine Zahl oder Variable gesucht, welche innerhalb einer Addition in allen Summanden vorkommt. Haben Gleichungen kein konstantes Glied, ist jeder Summand von x abhängig und das x kann damit ausgeklammert werden. Dabei kannst Du wie folgt vorgehen:

  • Schritt 1: Variable x mit dem kleinsten Exponenten ausklammern
  • Schritt 2: Beide Faktoren gleich null setzen
  • Schritt 3: Gleichungen nach der Variable x auflösen

Gesucht ist die Lösung der folgenden Gleichung:

Schritt 1: Variable x ausklammern

In dieser Gleichung gibt es keinen konstanten Term. Du kannst also x ausklammern:

Schritt 2: Beide Faktoren gleich null setzen

Dieser Ausdruck wird genau dann gleich null, wenn einer der beiden Faktoren gleich null ist. Demnach ergeben sich folgende Gleichungen:

Wenn Du mehrere Gleichungen vorliegen hast, werden diese zur besseren Übersicht mit römischen Zahlen gekennzeichnet.

Schritt 3: Gleichungen nach der Variable x auflösen

Aus der Gleichung folgt:

Bei Gleichung handelt es sich um eine quadratische Gleichung.

Dafür kennst Du bereits Lösungsverfahren. Hier bietet sich zum Beispiel die Mitternachtsformel an.

Die gesamte Lösungsmenge lautet also .

Im obigen Beispiel konntest Du den Faktor x ausklammern. Manchmal ist es aber auch möglich, noch mehr als nur x auszuklammern, also höhere Potenzen von x.

Kannst Du Dich noch an das Beispiel vom Anfang erinnern?

Gleichung höheren Grades Beispiel einer Funktion an einer Halfpipe StudySmarterAbbildung 2: Beschreibung einer Halfpipe durch eine Funktion f(x)

Dargestellt wird eine Funktion f(x), welche näherungsweise den Querschnitt einer Halfpipe beschreibt. Gesucht ist die Breite b der Halfpipe, wobei die Angaben im Koordinatensystem in Metern zu verstehen sind. Da die beiden äußersten Punkte die Nullstellen der Funktion f(x) darstellen, musst Du die Funktion gleich null setzen und damit die folgende Gleichung lösen:

Schritt 1: Variable x ausklammern

Auch in dieser Gleichung gibt es kein konstantes Glied, welches nicht von x abhängig ist. Du kannst also x ausklammern.

Fällt Dir etwas auf? Im zweiten Faktor steht noch kein konstantes Glied, also keine Zahl ohne x. Somit kann noch weiter ausgeklammert werden. Du kannst also direkt x4 ausklammern.

Demnach kannst Du direkt die Variable mit dem kleinsten Exponenten der Gleichung auszuklammern.

Schritt 2: Beide Faktoren gleich null setzen

Schritt 3: Gleichungen nach der Variable x auflösen

Aus der Gleichung folgt:

Aus Gleichung folgt:

Die gesamte Lösungsmenge lautet .

Für die Breite b der Halfpipe sind nur die beiden äußersten Nullstellen x1 und x2 relevant. Gesucht ist also der Abstand zwischen diesen Nullstellen.

Die Halfpipe hat somit eine Breite von Metern, was in etwa 2,8 Metern entspricht.

Jetzt weißt Du, wie Du Gleichungen lösen kannst, die kein konstantes Glied haben. Wie gehst Du aber beim Lösen von Gleichungen vor, bei denen Du nicht ausklammern kannst?

Gleichungen höheren Grades lösen durch Substitution

Bei der Substitution geht es genau wie beim Ausklammern darum, den Grad einer Gleichung zu verringern. Ziel ist es, eine quadratische Gleichung zu erhalten, von der Du ja mittlerweile weißt, wie sie zu lösen ist.

Unter dem Begriff der Substitution wird der Austausch eines Terms durch einen anderen verstanden.

Gleichung höheren Grades Substitution StudySmarter

Die Rücksubstitution stellt die Wiederherstellung des Ursprungsterms dar und macht die Veränderung wieder rückgängig.

Gleichung höheren Grades Rücksubstitution StudySmarter

Die Methode kannst Du nur bei Gleichungen folgender Art anwenden:

Gleichung höheren Grades Form der Gleichungen für Substitution StudySmarter

Dabei kannst Du Dich nach folgendem Ablauf richten:

  • Schritt 1: Ersetze den Term xn durch eine Variable z

  • Schritt 2: Löse die quadratische Gleichung beispielsweise mit der Mitternachtsformel
  • Schritt 3: Rücksubstituiere die Variable z wieder durch xn
  • Schritt 4: Ziehe die nte Wurzel und bestimme die Lösungsmenge

Gesucht ist die Lösung der folgenden Gleichung:

Da bei der Gleichung der Exponent 4 dem Doppelten des Exponenten 2 entspricht, kann hier die Substitution angewendet werden.

Schritt 1: Ersetze den Term x2 durch eine Variable z

Schritt 2: Lösen der quadratischen Gleichung nach z

Da Du jetzt durch die Substitution eine quadratische Gleichung vorliegen hast, kannst Du wieder die Mitternachtsformel anwenden.

Schritt 3: Rücksubstituiere die Variable z wieder durch x2

Da die ursprüngliche Gleichung durch die Substitution verändert wurde, ist es nötig, die Substitution wieder rückgängig zu machen. Das heißt, Du ersetzt in den beiden Lösungen jeweils das z durch x2.

Schritt 4: Ziehe die Wurzel und bestimme die Lösungsmenge

Die gesamte Lösungsmenge lautet also .

Mehr zu dem Thema kannst Du in der Erklärung "Substitution Nullstellen" finden.

Polynomdivision zur Lösung von Gleichungen höheren Grades

Wenn es nicht möglich ist, Gleichungen höheren Grades mit den zuvor genannten Methoden zu vereinfachen, kannst Du die Polynomdivision anwenden. Diese kannst Du anders als beim Ausklammern oder der Substitution bei jeder Art von Gleichung anwenden.

Bei der Polynomdivision geht es darum, eine Gleichung in ein Produkt von mehreren Faktoren umzuwandeln. Dies wird als Zerlegung in die Linearfaktoren bezeichnet.

Gleichung höheren Grades Polynomdivision StudySmarter

Um die Gleichung von der allgemeinen Form in ihre Linearfaktoren zu überführen, werden, wie der Name schon sagt, zwei Polynome miteinander dividiert. Sie basiert also auf dem schriftlichen Dividieren. Dabei kannst Du Dich nach folgendem Ablauf richten.

  • Schritt 1: Finde eine Nullstelle als Divisor durch Ausprobieren
  • Schritt 2: Führe die Polynomfunktion durch
  • Schritt 3: Berechne die Lösungen für x aus den Faktoren

Gesucht ist die Lösung der folgenden Gleichung:

Schritt 1: Finde eine Nullstelle als Divisor durch Ausprobieren

Um eine Division durchführen zu können, benötigst Du einen Divisor. Dieser Divisor muss in der Gleichung eine Lösung für x sein. Es handelt sich also um eine Nullstelle. Ist diese Nullstelle in der Aufgabe nicht mit angegeben, kannst Du sie durch Ausprobieren herausfinden. Setze dafür kleinere ganze Zahlen für x in die Gleichung ein.

Damit ist 2 eine Lösung für x. Als Linearfaktor notiert ergibt sich daraus .

Schritt 2: Führe die Polynomdivision durch

Jetzt teilst Du die gegebene Gleichung durch die gefundene Nullstelle, also . Dabei gehst Du genau so vor, wie bei der schriftlichen Division.

Ging Dir das etwas zu schnell? Das Verfahren der Polynomdivision ist noch etwas kleinschrittiger in der Erklärung "Polynomdivision" beschrieben. Schau gerne dort vorbei.

Was hast Du dadurch nun gewonnen? Du hast die obige Gleichung faktorisiert und damit den Grad wie beim Ausklammern verringert.

Schritt 3: Berechne die Lösungen für x aus den Faktoren

Du hast jetzt also wieder genau wie beim Ausklammern die Gleichung in zwei Faktoren zerlegt. Wie gehst Du jetzt vor? Genau, Du kannst beide Faktoren gleich null setzen und nach x auflösen.

Aus Gleichung folgt:

Gleichung kann mit der ABC bzw. Mitternachtsformel gelöst werden.

Die Gleichung hat somit als Lösungsmenge.

Lösen von Gleichungen höheren Grades – Aufgaben

Mit den folgenden Aufgaben hast Du jetzt die Möglichkeit, Dein Wissen über das Lösen von Gleichungen höheren Grades auf die Probe zu stellen und zu vertiefen.

Aufgabe 1

Löse die folgende Gleichung

Lösung

Da bei der Gleichung kein konstantes Glied a0 vorliegt, kannst Du hier das Ausklammern anwenden.

Schritt 1: Variable x mit dem kleinsten Exponenten ausklammern.

Schritt 2: Beide Faktoren gleich null setzen.

Schritt 3: Gleichungen nach der Variable x auflösen.

Aus der Gleichung folgt:

Aus der Gleichung folgt:

Die Lösungsmenge lautet somit:

Aufgabe 2

Bestimme die Lösung der folgenden Gleichung:

Lösung

Da bei der Gleichung der Exponent 6 dem Doppelten des Exponenten 3 entspricht und ansonsten nur ein konstantes Glied vorhanden ist, kann hier die Substitution angewendet werden.

Schritt 1: Ersetze den Term x3 durch eine Variable z.

Schritt 2: Lösen der quadratischen Gleichung nach z.

Schritt 3: Rücksubstituiere die Variable z wieder durch x3.

Schritt 4: Ziehe die dritte Wurzel und bestimme die Lösungsmenge.

Die Lösungsmenge lautet somit .

Aufgabe 3

Bestimme die Lösung der folgenden Gleichung

Lösung

Schritt 1: Finde eine Nullstelle als Divisor durch Ausprobieren.

Hierfür setzt Du wieder Zahlen, wie für x in die Gleichung ein.

Damit ist eine Lösung der Gleichung. Als Linearfaktor notiert ergibt sich .

Schritt 2: Führe die Polynomfunktion durch.

Daraus ergibt sich dann die folgende Faktorisierung:

Schritt 3: Berechne die Lösungen für x aus den Faktoren.

Aus Gleichung folgt:

Gleichung kann mit der ABC bzw. Mitternachtsformel gelöst werden.

Die gesamte Lösungsmenge lautet somit .

Gleichung höheren Grades – Das Wichtigste

  • Gleichungen mit einem Grad von 3 oder höher heißen Gleichungen höheren Grades. In der Mathematik werden sie im Allgemeinen wie folgt beschrieben:Gleichung höheren Grades Definition StudySmarter
  • Der Koeffizient a0 wird als konstantes Glied bezeichnet.
  • Eine quadratische Gleichung der Form kannst Du mithilfe der Mitternachtsformel berechnen. Sie lautet:
  • Eine Gleichung ohne konstantes Glied a0 kannst Du mit dem Ausklammern lösen.
    • Schritt 1: Variable x mit dem kleinsten Exponenten ausklammern
    • Schritt 2: Beide Faktoren gleich null setzen
    • Schritt 3: Gleichungen nach der Variable x auflösen
  • Eine Gleichung der Form kannst Du mit der Substitution lösen.
    • Schritt 1: Ersetze den Termxn durch eine Variable z :
    • Schritt 2: Löse die quadratische Gleichung beispielsweise mit der Mitternachtsformel
    • Schritt 3: Rücksubstituiere die Variable z wieder durch xn
    • Schritt 4: Ziehe die nte Wurzel und bestimme die Lösungsmenge
  • Jede Gleichung höheren Grades kann durch die Polynomdivision gelöst werden.
    • Schritt 1: Finde eine Nullstelle als Divisor durch Ausprobieren
    • Schritt 2: Führe die Polynomfunktion durch
    • Schritt 3: Berechne die Lösungen für x aus den Faktoren

Nachweise

  1. Proß, Imkamp (2018). Algebra-Grundwissen. Brückenkurs Mathematik für den Studieneinstieg. Springer. Berlin Heidelberg.
  2. Erbrecht et al. (2012). Das große Tafelwerk interaktiv Formelsammlung für die Sekundarstufen I und II. Cornelsen Verlag, Berlin

Häufig gestellte Fragen zum Thema Gleichung höheren Grades

Gleichungen mit einem Grad von 3 oder höher heißen Gleichungen höheren Grades. Im Exponent von x muss also mindestens eine 3 stehen.

Beim Lösen von Gleichungen höheren Grades versuchst Du den Grad der Gleichung möglichst zu verringern, sodass letztlich eine quadratische Gleichung vorliegt, die Du dann mithilfe vom Wurzelziehen oder der Mitternachtsformel lösen kannst. Dabei gibt es drei verschiedene Möglichkeiten: das Ausklammern, die Substitution und die Polynomdivision.

Eine quadratische Gleichung der Form ax2+bx+c=0 kannst mithilfe der Mitternachtsformel lösen. Ist a=1, so kannst Du auch die p-q-Formel benutzen.

Finales Gleichung höheren Grades Quiz

Frage

Nenne die Schritte des Ausklammerns zur Lösung von Gleichungen höheren Grades.

Antwort anzeigen

Antwort

Das Ausklammern besteht aus den folgenden Schritten:


  • Schritt 1: Variable x mit dem kleinsten Exponenten ausklammern
  • Schritt 2: Beide Faktoren gleich null setzen
  • Schritt 3: Gleichungen nach der Variable x auflösen
Frage anzeigen

Frage

Welche Verfahren kennst Du, um Gleichungen höheren Grades zu lösen?

Antwort anzeigen

Antwort

Zur Lösung von Gleichungen höheren Grades gibt es folgende Verfahren:


  • Ausklammern
  • Substitution
  • Polynomdivision
Frage anzeigen

Frage

Nenne die Schritte der Polynomdivision zur Lösung von Gleichungen höheren Grades.

Antwort anzeigen

Antwort

Die Polynomdivision besteht aus den folgenden Schritten:


  • Schritt 1: Finde eine Nullstelle als Divisor durch Ausprobieren
  • Schritt 2: Führe die Polynomfunktion durch, indem Du die Gleichung durch die Nullstelle teilst
  • Schritt 3: Berechne die Lösungen für x aus den Faktoren
Frage anzeigen
Mehr zum Thema Gleichung höheren Grades
60%

der Nutzer schaffen das Gleichung höheren Grades Quiz nicht! Kannst du es schaffen?

Quiz starten

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Gerade angemeldet?

Ja
Nein, aber ich werde es gleich tun

Melde dich an für Notizen & Bearbeitung. 100% for free.