Open in App
Login Anmelden

Select your language

Suggested languages for you:
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|
Ganze Zahlen

In diesem Artikel bekommst du einen umfassenden Einblick in das Thema Ganze Zahlen. Du erfährst, was Ganze Zahlen sind, welche Rolle sie in der Mathematik spielen und wie du mit ihnen umgehst. Außerdem werden Verbindungen zu anderen Zahlenbereichen, darunter die Rationalen, Natürlichen und Reellen Zahlen, hergestellt und deutlich gemacht. Anhand von praxisnahen Beispielen und Anleitungen erhältst du wertvolle Werkzeuge, um auch komplexe Aufgaben im Umgang mit Ganzen Zahlen erfolgreich zu meistern.

Inhalt von Fachexperten überprüft
Kostenlose StudySmarter App mit über 20 Millionen Studierenden
Mockup Schule

Entdecke über 50 Millionen kostenlose Lernmaterialien in unserer App.

Ganze Zahlen

Illustration

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmelden

Nie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmelden
Illustration

In diesem Artikel bekommst du einen umfassenden Einblick in das Thema Ganze Zahlen. Du erfährst, was Ganze Zahlen sind, welche Rolle sie in der Mathematik spielen und wie du mit ihnen umgehst. Außerdem werden Verbindungen zu anderen Zahlenbereichen, darunter die Rationalen, Natürlichen und Reellen Zahlen, hergestellt und deutlich gemacht. Anhand von praxisnahen Beispielen und Anleitungen erhältst du wertvolle Werkzeuge, um auch komplexe Aufgaben im Umgang mit Ganzen Zahlen erfolgreich zu meistern.

Ganze Zahlen: Eine Einführung

Ganze Zahlen gelten als ein fundamentaler Bestandteil der Mathematik. Du bist zweifellos auf sie in einer Vielzahl von Situationen gestoßen, vom Alltagsleben bis hin zu den mathematischen Aufgaben, die du in der Schule erledigst.

Ganze Zahlen sind Mathematische Objekte, die aus der Menge der Natürlichen Zahlen, Null und den negativen Gegenteilen der Natürlichen Zahlen besteht.

Die Welt der Ganzen Zahlen

Die Geschichte der Ganzen Zahlen geht weit zurück. Sie waren von zentraler Bedeutung in alten Zivilisationen wie den Ägyptern und Griechen. Ganze Zahlen sind nicht nur positive Zahlen wie 1, 2, 3 und so weiter, sondern umfassen auch die negativen Zahlen.
  • \(-3, -2, -1, 0, 1, 2, 3\) sind alle Beispiele für Ganze Zahlen

Definition der Ganzen Zahlen

Die formelle Definition der Ganzen Zahlen umfasst positive Zahlen, negative Zahlen und null.

In mathematischer Form lässt sich das so darstellen: \[ \Z = \{...,-3, -2, -1, 0, 1, 2, 3, ...\} \]

Was sind Ganze Zahlen?

Derzeit, Ganze Zahlen sind Zahlen ohne Dezimal- oder Bruchteil. Sie können sowohl positiv als auch negativ sein und umfassen auch die Zahl null.

Ein einfacher Weg, ganze Zahlen zu visualisieren, ist eine gerade Linie zu zeichnen, die als Zahlenlinie bekannt ist. Sie sieht folgendermaßen aus: \[ ...\ -3, -2, -1, 0, 1, 2, 3, ... \]

Beispiele für Ganze Zahlen

Es gibt unzählige Beispiele für Ganze Zahlen im Alltagsleben, ebenso wie in der Mathematik.

Zum Beispiel könnten Ganze Zahlen verwendet werden, um die Anzahl der Personen in einem Raum darzustellen, die Follower, die du auf Social Media hast, oder einfach, um die Antworten auf einfache arithmetische Rechenoperationen wie Addition, Subtraktion etc. darzustellen.

Alltagsbeispiele für Ganze Zahlen

Der Verwendung von Ganzen Zahlen im Alltag sind keine Grenzen gesetzt.

Zum Beispiel könntest du Ganze Zahlen verwenden, um zu erklären, wie viele Schritte du an einem Tag gegangen bist. Wenn du einen Schrittzähler verwendest, zeigt er eine Ganze Zahl an: die Anzahl der Schritte, die du an diesem Tag gegangen bist.

Ein weiteres interessantes Anwendungsbeispiel für Ganze Zahlen sind Finanzen. Wenn du in einem Geschäft einkaufst und einen Artikel zurückgibst, wird die Rückgabe als negative Zahl betrachtet, was eine Reduzierung des Geldbetrags darstellt, den du ausgegeben hast.

Ganze Zahlen und ihre Verbindungen

Die Mathematik ist ein weit verzweigtes Netzwerk, in dem verschiedene Arten von Zahlen auf vielfältige Weise miteinander verbunden sind - und die Ganzen Zahlen sind keine Ausnahme. Die Ganzen Zahlen interagieren ständig mit anderen Zahlen, einschließlich Rationaler Zahlen, Natürlicher Zahlen und Reeller Zahlen.

Ganze Zahlen und Rationale Zahlen

Rationale Zahlen sind alle Zahlen, die als Quotient zweier Ganzer Zahlen dargestellt werden können, wobei der Nenner nicht gleich null ist. Damit gehören alle Ganzen Zahlen zur Menge der Rationalen Zahlen.

Formal betrachtet werden Rationale Zahlen durch das Symbol \(\Q\) repräsentiert und können formell definiert werden als \(\Q = \{ \frac{p}{q}: p, q \in \Z, q \neq 0 \}\).

Darüber hinaus gibt es einige wichtige Unterschiede zwischen Ganzen und Rationalen Zahlen. Rationale Zahlen beinhalten nämlich nicht nur Ganze Zahlen, sondern auch Zahlen, die sich als Brüche darstellen lassen.

Beispiele für Rationale Zahlen sind \(\frac{2}{3}, -\frac{7}{5}, 0, 1,\) und \(2\). Jede Ganze Zahl kann als Bruch dargestellt werden, zum Beispiel ist \(2 = \frac{2}{1}\).

Ganze Zahlen als Teilmenge der Rationalen Zahlen

Durch die obige Definition ist klar, dass die Ganzen Zahlen eine Teilmenge der Rationalen Zahlen sind: Jede Ganze Zahl kann als Rationale Zahl angesehen werden, wenn sie als Bruch mit 1 als Nenner dargestellt wird.

Für jeden Wert \(z\) in der Menge der Ganzen Zahlen gibt es einen Wert \(q\) in \(\Q\), so dass \(z = \frac{q}{1}\). Zum Beispiel würde -3 in der Menge der Rationale Zahlen durch \(-\frac{3}{1}\) dargestellt werden.

Ganze Zahlen und Natürliche Zahlen

Natürliche Zahlen sind die Zahlen, die du zum Zählen der Dinge in der physischen Welt verwendest. Diese Zahlen beginnen bei 1 und gehen dann bis ins Unendliche und beinhalten keine negativen Zahlen oder Null.

Formell betrachtet werden Natürliche Zahlen durch das Symbol \(\N\) repräsentiert und können formell definiert werden als \[\N = \{ 1, 2, 3,\ldots \}\].

Verbindung zwischen Ganzen und Natürlichen Zahlen

Ganze Zahlen erweitern die Natürlichen Zahlen, indem sie Null und negative Zahlen einbeziehen. Das heißt, die Ganzen Zahlen umfassen die Natürlichen Zahlen und fügen zusätzliche Elemente hinzu.

Ganze Zahlen können als \(\Z = \{ ...,-3, -2, -1, 0, 1, 2, 3, ... \}\) definiert werden, welche die Natürlichen Zahlen als positive Ganzzahlen enthalten.

Ganze Zahlen und Reelle Zahlen

Reelle Zahlen sind die weiteste Kategorie, die wir bislang betrachtet haben, da sie auch Brüche, Dezimalzahlen und sogar Wurzeln und Transzendentale Zahlen wie \(\pi\) und \(e\) enthält.

Reelle Zahlen werden durch das Symbol \(\R\) repräsentiert und können als eine Vereinigung von Rationalen und Irrationalen Zahlen angesehen werden: \(\R = \Q \cup \I\), wobei \(\I\) die Menge der Irrationalen Zahlen ist.

Wie passen Ganze und Reelle Zahlen zusammen?

Die Ganzen Zahlen sind eine Teilmenge der Reellen Zahlen - tatsächlich sind sie auch eine Teilmenge der Rationalen Zahlen, die ihrerseits eine Teilmenge der Reellen Zahlen sind.

Jede Ganze Zahl ist auch eine Rationale Zahl (da sie als Bruch dargestellt werden kann), und jede Rationale Zahl ist auch eine Reelle Zahl.

Es lohnt sich zu beachten, dass es viele mehr Reelle Zahlen als Ganze Zahlen gibt - tatsächlich gibt es unendlich viele Reelle Zahlen zwischen jeder Paar von Ganzen Zahlen! Dies ist ein Ergebnis der sogenannten Kardinalität von unendlichen Mengen - ein faszinierendes und oft kontra-intuitives Gebiet der Mathematik.

Arbeiten mit Ganzen Zahlen

Zu den Grundlagen des Rechnens mit Ganzen Zahlen gehören das Addieren und Subtrahieren sowie das Umrechnen in Brüche. Darüber hinaus ist es wichtig, den Übergang von Gebrochenen zu Ganzen Zahlen zu verstehen.

Ganze Zahlen addieren und subtrahieren

Die Addition und Subtraktion Ganzer Zahlen ist ein essentieller Baustein in der Mathematik. Für positive ganze Zahlen verläuft dieser Prozess geradlinig. Jedoch, wenn negative Zahlen ins Spiel kommen, kann es manchmal verwirrend sein. Wenn du zwei positive Ganze Zahlen addierst, erhältst du eine positivere Ganze Zahl. Wenn du eine positive und eine negative Ganze Zahl addierst, subtrahierst du effektiv den Absolutbetrag der negativen Zahl von der positiven Zahl. In den Fällen, in denen eine größere positive Zahl zu einer kleineren negativen Zahl addiert wird, ist das Ergebnis immer positiv. Wenn du zwei negative Ganze Zahlen addierst, erhältst du eine negativere Ganze Zahl. Wenn du eine negative und eine positive Ganze Zahl subtrahierst, addierst du effektiv den Absolutbetrag der negativen Zahl zur positiven Zahl. In den Fällen, in denen eine größere negative Zahl von einer kleineren positiven Zahl subtrahiert wird, ist das Ergebnis immer negativ.

Anleitung: So addierst und subtrahierst du Ganze Zahlen

Um die Addition und Subtraktion Ganzer Zahlen zu demonstrieren, können wir die Zahlenlinie als ein nützliches Werkzeug verwenden. 1. Um \(3 + 2\) zu berechnen, startet man bei der Zahl 3 auf der Zahlenlinie und geht in positiver Richtung 2 Schritte weiter. Man landet bei \(3 + 2 = 5\). 2. Um \(-3 + 2\) zu berechnen, startet man bei der Zahl -3 auf der Zahlenlinie und geht in positiver Richtung 2 Schritte weiter. Man landet bei \(-3 + 2 = -1\). 3. Um \(3 - 2\) zu berechnen, startet man bei der Zahl 3 auf der Zahlenlinie und geht in negativer Richtung 2 Schritte weiter. Man landet bei \(3 - 2 = 1\). 4. Um \(-3 - 2\) zu berechnen, startet man bei der Zahl -3 auf der Zahlenlinie und geht in negativer Richtung 2 Schritte weiter. Man landet bei \(-3 - 2 = -5\).

Ganze Zahlen in Brüche umwandeln

Manchmal ist es nützlich oder notwendig, Ganze Zahlen in Brüche umzuwandeln. Glücklicherweise ist dieser Prozess relativ einfach, da jede Ganze Zahl bereits eine spezielle Form eines Bruches ist. Ein Bruch ist lediglich eine Zahl, die das Verhältnis zwischen zwei Ganzen Zahlen darstellt. Wenn du eine Ganze Zahl in einen Bruch umwandeln möchtest, verwendet man die Zahl als Zähler und 1 als Nenner.

Schritt-für-Schritt Anleitung: Ganze Zahlen in Brüche umwandeln

Der Umwandlungsprozess einer Ganzen Zahl in einen Bruch ist ziemlich einfach und es folgt eine schrittweise Darstellung, wie es gemacht wird. 1. Nimm eine Ganze Zahl, sagen wir 3. 2. Setze diese Zahl als Zähler eines Bruches, und setze den Nenner als 1. Daher wird die Ganze Zahl 3 als Bruch \(\frac{3}{1}\) dargestellt. 3. So ist jede Ganze Zahl ist also tatsächlich auch eine Rationale Zahl, da sie als Bruch mit dem Nenner 1 dargestellt werden kann.

Gebrochene Zahlen und Ganze Zahlen

Gebrochene Zahlen, auch Brüche genannt, sind eine Art von Zahlen, die das Verhältnis zwischen zwei Ganzen Zahlen darstellen. Sie setzen sich aus einem Zähler und einem Nenner zusammen und können zur Darstellung von Teilgrößen oder Verhältnissen verwendet werden. Ganze Zahlen sind eine Unterklasse der Gebrochenen Zahlen, da jede Ganze Zahl als Bruch mit dem Nenner 1 geschrieben werden kann.

Der Übergang von Gebrochenen zu Ganzen Zahlen

Es gibt einen nahtlosen Übergang von Gebrochenen zu Ganzen Zahlen, da jede Ganze Zahl als ein spezieller Bruch mit dem Nenner 1 dargestellt werden kann. Ein interessanter Aspekt dieser Überlegung ist die Tatsache, dass man mit Gebrochenen Zahlen rechnen kann, genau wie mit Ganzen Zahlen. In einigen Fällen können Rechenoperationen, insbesondere die Multiplikation und Division, sogar einfacher sein, wenn die Zahlen als Brüche anstatt als Ganze Zahlen dargestellt werden. Um einen Bruch in eine Ganze Zahl umzuwandeln, muss der Nenner des Bruchs 1 sein. Wenn das nicht der Fall ist, dann ist der Bruch keine Ganze Zahl. Eine Ganze Zahl kann jedoch leicht in einen Bruch umgewandelt werden, indem man sie als Zähler verwendet und 1 als Nenner einsetzt. Das Verständnis des Übergangs von Gebrochenen zu Ganzen Zahlen ist ein grundlegender Aspekt des Verständnisses des Zusammenhangs zwischen verschiedenen Arten von Zahlen. Die Fähigkeit, Zahlen in verschiedenen Formaten zu verwenden und umzuwandeln, ist eine wichtige Fähigkeit in vielen Bereichen der Mathematik.

Ganze Zahlen - Das Wichtigste

  • Ganze Zahlen sind mathematische Objekte, die aus der Menge der Natürlichen Zahlen, Null und den negativen Gegenteilen der Natürlichen Zahlen bestehen
  • Beispiele für Ganze Zahlen umfassen -3, -2, -1, 0, 1, 2, 3
  • Ganze Zahlen sind eine Teilmenge der Rationalen Zahlen: Jede Ganze Zahl kann als Rationale Zahl angesehen werden, wenn sie als Bruch mit 1 als Nenner dargestellt wird
  • Ganze Zahlen erweitern die Natürlichen Zahlen, indem sie Null und negative Zahlen einbeziehen
  • Um eine Ganze Zahl in einen Bruch umzuwandeln, verwendet man die Zahl als Zähler und 1 als Nenner
  • Addition und Subtraktion mit Ganzen Zahlen beinhaltet den Umgang mit positiven und negativen Zahlen und kann durch den Gebrauch einer Zahlenlinie visualisiert werden

Häufig gestellte Fragen zum Thema Ganze Zahlen

Um ganze Zahlen zu multiplizieren, multipliziert man einfach die Absolutwerte der Zahlen. Wenn die beiden Zahlen das gleiche Vorzeichen haben (beide positiv oder beide negativ), ist das Ergebnis positiv. Wenn die beiden Zahlen unterschiedliche Vorzeichen haben, ist das Ergebnis negativ.

Der Betrag einer Zahl ist ihr Wert ohne Berücksichtigung des Vorzeichens. Beispiel: Der Betrag von -5 oder +5 ist 5. Die Gegenzahl zu einer Zahl ist die Zahl mit entgegengesetztem Vorzeichen. Beispiel: Die Gegenzahl von -5 ist 5 und umgekehrt.

Nein, Brüche sind keine ganzen Zahlen. Ganze Zahlen sind nur Zahlen ohne Dezimal- oder Bruchteil, einschließlich Null und sowohl positiven als auch negativen Zahlen. Brüche hingegen sind rationale Zahlen, die nicht auf eine ganze Zahl begrenzt sind.

Um eine ganze Zahl mit einem Bruch zu multiplizieren, wandelt man die ganze Zahl in einen Bruch um, indem man sie über 1 schreibt. Danach multipliziert man die Zähler miteinander und ebenso die Nenner. Das Resultat ist der neue Bruch.

Finales Ganze Zahlen Quiz

Ganze Zahlen Quiz - Teste dein Wissen

Frage

Wie heißt unser Zahlensystem? 


Antwort anzeigen

Antwort

Zehnersystem. Die zehn Ziffern 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 genügen, um jede beliebige Zahl darzustellen.

Frage anzeigen

Frage

Was sind natürliche Zahlen? 

Antwort anzeigen

Antwort

Die Zahlen (1, 2, 3, 4, …), mit denen du abzählst, nennt man natürliche Zahlen

Frage anzeigen

Frage

Was ist die Menge der ganzen Zahlen? 

Antwort anzeigen

Antwort

Man erweitert die natürlichen Zahlen um ihre negativen Gegenzahlen und erhält die Menge der ganzen Zahlen

Frage anzeigen

Frage

Was ist der Betrag einer Zahl? 

Antwort anzeigen

Antwort

Der Abstand einer Zahl a von 0 wird ihr Betrag IaI genannt. Der Betrag einer Zahl ist immer positiv oder null.

Frage anzeigen

Frage

Wann entstehen Brüche? 

Antwort anzeigen

Antwort

Wenn man ein Ganzes oder mehrere Ganze in gleich große Teile zerlegt.

Frage anzeigen

Frage

Was sagt der Zähler und Nenner eines Bruchs aus?

Antwort anzeigen

Antwort

Am Nenner eines Bruches erkennt man, in wie viele Teile ins- gesamt zerlegt wird. 


Der Zähler gibt an, wie viele dieser Teile genommen werden.

Frage anzeigen

Frage

Was sind gemischte Zahlen? 

Antwort anzeigen

Antwort

Gemischte Zahlen setzen sich aus einer ganzen Zahl und einem Bruch zusammen.

Frage anzeigen

Frage

Was bilden alle positiven und negativen Brüche zusammen? 

Antwort anzeigen

Antwort

Die Menge der rationalen Zahlen.

Frage anzeigen

Frage

Was hat jede Zahl?

Antwort anzeigen

Antwort

Jede natürliche Zahl hat eine bestimmte Anzahl von Teilern, d. h. Zahlen, durch die sie ohne Rest teilbar ist, und eine unendliche Anzahl von Vielfachen.

Frage anzeigen

Frage

Was ist die Teilermenge einer Zahl? 

Antwort anzeigen

Antwort

Sämtliche Teiler einer natürlichen Zahl n bilden die endliche Teilermenge Tn.


Tn enthält stets die Teiler 1 und n, die deshalb auch als uneigentliche Teiler bezeichnet werden.

Frage anzeigen

Frage

Was ist die Teilermenge von 16?

Antwort anzeigen

Antwort

T = {1; 2; 4; 8; 16}

Frage anzeigen

Frage

Was ist die Vielfachmenge einer Zahl?

Antwort anzeigen

Antwort

Die Menge aller Vielfachen einer natürlichen Zahl n, die Vielfachenmenge Vn, ist im Gegensatz zur Teilermenge Tn eine unendliche Menge


Vn = (n; 2 ∙ n; 3 ∙ n; …)

Frage anzeigen

Frage

Was ist die Vielfachmenge von 3?

Antwort anzeigen

Antwort

V3 = {3; 6; 9; 12; 15; …}

Frage anzeigen

Frage

Was ist der größte gemeinsame Teiler? 

Antwort anzeigen

Antwort

Der größte gemeinsame Teiler (ggT) zweier oder mehrerer natürlicher Zahlen ist die größte Zahl, die alle diese Zahlen teilt.

Frage anzeigen

Frage

Was ist der größte gemeinsame Teiler von 12 und 18?

Antwort anzeigen

Antwort

T12 = {1; 2; 3; 4; 6; 12} 

T18 = {1; 2; 3; 6; 9; 18} 

ggT(12; 18) = 6

Frage anzeigen

Frage

Was ist das kleinste gemeinsame Vielfache? 

Antwort anzeigen

Antwort

Das kleinste gemeinsame Vielfache (kgV) zweier oder mehrerer natürlicher Zahlen ist die kleinste Zahl, die durch alle diese Zahlen teilbar ist.

Frage anzeigen

Frage

Was ist das kleinste gemeinsame Vielfache von 12 und 18?

Antwort anzeigen

Antwort

V12 = {12; 24; 36; 48; 60; 72; …} 

V18 = {18; 36; 54; 72; 90; …} 

kgV(12; 18) = 36

Frage anzeigen

Frage

Welche Endstellenregeln gibt es?

Antwort anzeigen

Antwort

  • Eine Zahl ist durch 2 teilbar, wenn ihre Endziffer gerade (0, 2, 4, 6 oder 8) ist.
  • Eine Zahl ist durch 4 teilbar, wenn die beiden letzten Ziffern der Zahl 00 sind oder eine durch 4 teilbare Zahl bilden.
  • Eine Zahl ist durch 5 teilbar, wenn sie auf 0 oder 5 endet.
  • Eine Zahl ist durch 10 teilbar, wenn sie auf 0 endet.

Frage anzeigen

Frage

Ist die Zahl 916 durch 2, 4, 5 oder 10 teilbar?


Antwort anzeigen

Antwort

Die Zahl 916 ist durch 2 teilbar, weil ihre Endziffer gerade ist. 


Sie ist auch durch 4 teilbar, weil die letzten beiden Ziffern (16) durch 4 teilbar sind. 


916 ist aber nicht durch 5 bzw. 10 teilbar, weil die Zahl weder auf 0 noch auf 5 endet.

Frage anzeigen

Frage

Was ist die Quersummenregel?

Antwort anzeigen

Antwort

  • Eine Zahl ist durch 3 teilbar, wenn ihre Quersumme durch 3 teilbar ist.
  • Eine Zahl ist durch 9 teilbar, wenn ihre Quersumme durch 9 teilbar ist.

Frage anzeigen

Frage

Wie berechnet man die Quersumme einer Zahl?

Antwort anzeigen

Antwort

Die Quersumme einer Zahl ist die Summe aller Ziffern der Zahl.

Frage anzeigen

Frage

ist die Zahl 2154 durch 3 und 9 teilbar? 

Antwort anzeigen

Antwort

Quersumme = 2 + 1 + 5 + 4 = 12


Die Quersumme der Zahl und damit auch die Zahl selbst ist durch 3, aber nicht durch 9 teilbar.

Frage anzeigen

Frage

Wann ist eine Teilbarkeit durch 6 gegeben?

Antwort anzeigen

Antwort

Die Teilbarkeit durch 6 = 2 ∙ 3 ergibt sich, wenn die Zahl durch 2 und durch 3 teilbar ist. 


Eine natürliche Zahl ist also durch 6 teilbar, wenn ihre Endziffer 0, 2, 4, 6 oder 8 ist und wenn ihre Quersumme durch 3 teilbar ist.

Frage anzeigen

Frage

Was sind Primzahlen? 

Antwort anzeigen

Antwort

Eine natürliche Zahl heißt Primzahl, wenn sie genau zwei Teiler besitzt. Eine Primzahl ist nur durch sich selbst und 1 teilbar.


Die Zahl 1 hat nur einen Teiler, daher ist 1 keine Primzahl. Die kleinste und gleichzeitig die einzige gerade Primzahl ist 2.

Frage anzeigen

Frage

Welche Regeln gelten für römische Zahlzeichen? 

Antwort anzeigen

Antwort

  • Bei absteigenden Werten der Zahlzeichen von links nach rechts werden die Werte addiert
  • Steht ein Zahlzeichen mit geringerem Wert links von einem Zeichen mit höherem Wert, wird das kleinere vom größeren subtrahiert.
  • Es werden höchstens drei gleiche Hauptzeichen hinter- einander notiert.
  • Nebenzeichen werden nicht wiederholt.

Frage anzeigen

Frage

Berechne die römische Ziffern: XI 

Antwort anzeigen

Antwort

XI = 10 + 1 = 11

Frage anzeigen

Frage

Berechne die römische Ziffern: IX

Antwort anzeigen

Antwort

IX = 10 - 1 = 9

Frage anzeigen

Frage

Berechne die römische Ziffern: LXXXVIII

Antwort anzeigen

Antwort

LXXXVIII = 50 + 10 +10 + 10 + 5 + 1 + 1 + 1 = 88

Frage anzeigen

Frage

Berechne die römische Ziffern: XCIX

Antwort anzeigen

Antwort

XCIX = (100 - 10) + (10 -1) = 90 + 9 = 99

Frage anzeigen

Frage

Berechne die römische Ziffern: MCDXIX

Antwort anzeigen

Antwort

MCDXIX = 1000 +(500 - 100) + 10 + (10-1) = 1419

Frage anzeigen

Frage

Wieso kann es sinnvoll sein Werte zu runden? 

Antwort anzeigen

Antwort

Manchmal ist es nicht sinnvoll, für eine Größe ganz genaue Zahlenwerte anzugeben, etwa bei der Einwohnerzahl einer Großstadt, die sich täglich ändert. 


In einem solchen Fall gibt man gerundete Zahlenwerte an. Ein (genauer) Wert wird dann durch einen Näherungswert ersetzt.

Frage anzeigen

Frage

Wann wird abgerundet? 

Antwort anzeigen

Antwort

Vor dem Runden wird die gewünschte Stelle bestimmt, auf die gerundet werden soll.


Folgt als nächste Ziffer eine 0, 1, 2, 3 oder 4, wird abgerundet. Die Ziffer an der gewünschten Stelle bleibt stehen.

Frage anzeigen

Frage

Wann wird aufgerundet? 

Antwort anzeigen

Antwort

Vor dem Runden wird die gewünschte Stelle bestimmt, auf die gerundet werden soll.


Folgt als nächste Ziffer eine 5, 6, 7, 8 oder 9, wird aufgerundet. Die Ziffer an der gewünschten Stelle wird um 1 erhöht.

Frage anzeigen

Frage

Addiere folgende Zahlen:

145 + 223 = ?

Antwort anzeigen

Antwort

Schreibe die Zahlen untereinander an und berechne:

                    1  4 5

                    2 2 3

                    ____

                    3 6 8

Frage anzeigen

Frage

Addiere folgende Zahlen:

1.379 + 789 = ?

Antwort anzeigen

Antwort

Schreibe die Zahlen untereinander an und berechne:

                  1 3 7 9

                    7 8 9

                    ____

                   2 1 6 8

Frage anzeigen

Frage

Addiere folgende Zahlen:

79 + 82

Antwort anzeigen

Antwort

Schreibe die Zahlen untereinander an und berechne:

                    7 9

                    8 2

                    ____

                   1 6 1

Frage anzeigen

Frage

Addiere folgende Zahlen:

974 + 737

Antwort anzeigen

Antwort

Schreibe die Zahlen untereinander an und berechne:

                    9 7 4

                    7 3 7

                    ____

                    1 7 1 1

Frage anzeigen

Frage

Addiere folgende Zahlen:

34 + 92

Antwort anzeigen

Antwort

Schreibe die Zahlen untereinander an und berechne:

                     3 4

                     9 2

                    ____

                    1 2 6

Frage anzeigen

Frage

Addiere folgende Zahlen:

17 + 46

Antwort anzeigen

Antwort

Schreibe die Zahlen untereinander an und berechne:

                     1  7

                     4 6

                    ____

                     6 3

Frage anzeigen

Frage

Addiere folgende Zahlen:

189 + 17 + 34

Antwort anzeigen

Antwort

Schreibe die Zahlen untereinander an und berechne:

                   1 8 9  

                      1 7

                      3 4

                    ____

                    2 4 0

Frage anzeigen

Frage

Addiere folgende Zahlen:

16 + 12 + 27

Antwort anzeigen

Antwort

Schreibe die Zahlen untereinander an und berechne:

                     1 6  

                     1  2

                     2 7

                    ____

                      5 5 

Frage anzeigen

Frage

Addiere folgende Zahlen:

1. 890 + 4.245

Antwort anzeigen

Antwort

Schreibe die Zahlen untereinander an und berechne:

                   1  8 9 0  

                   4 2 4 5

                  ________

                    6 1 3 5

Frage anzeigen

Frage

Addiere folgende Zahlen:

1.679 + 5.123

Antwort anzeigen

Antwort

Schreibe die Zahlen untereinander an und berechne:

                   1  6 7 9  

                   5 1  2 3

                  ________

                    6 8 0 2

Frage anzeigen

Frage

Welche der beiden Zahlen hat einen größeren Betrag? 

Antwort anzeigen

Antwort

-6

Frage anzeigen

Frage

Welche der folgenden ganzen Zahlen ist die größte?

Antwort anzeigen

Antwort

4

Frage anzeigen

Frage

Welche der folgenden Aussagen ist richtig?

Antwort anzeigen

Antwort

Jede natürliche Zahl ist eine ganze Zahl.

Frage anzeigen

Frage

Bewerte die folgende Aussage:

​Je weiter links eine Zahl auf der Zahlengerade liegt, desto kleiner ist sie. 

Antwort anzeigen

Antwort

Richtig.

Frage anzeigen

Frage

Begründe, warum ganze Zahlen an einer Zahlengeraden und nicht an einem Zahlenstrahl angeordnet werden.

Antwort anzeigen

Antwort

Ganze Zahlen werden an einer Zahlengerade angeordnet. Sie können nicht an einem Zahlenstrahl angeordnet werden, da dieser auf einer Seite ein Ende hat. Die Menge der ganzen Zahlen geht aber sowohl ins Positive, als auch ins Negative unendlich weiter.

Frage anzeigen

Frage

Was sind Ganze Zahlen?

Antwort anzeigen

Antwort

Ganze Zahlen sind Mathematische Objekte, die aus der Menge der Natürlichen Zahlen, Null und den negativen Gegenteilen der Natürlichen Zahlen besteht. Sie können sowohl positiv als auch negativ sein und umfassen auch die Zahl null.

Frage anzeigen

Frage

Wie lässt sich die Menge der Ganzen Zahlen mathematisch darstellen?

Antwort anzeigen

Antwort

Die Menge der Ganzen Zahlen lässt sich mathematisch so darstellen: \[ \Z = \{...,-3, -2, -1, 0, 1, 2, 3, ...\} \]

Frage anzeigen

Teste dein Wissen mit Multiple-Choice-Karteikarten

Welche der beiden Zahlen hat einen größeren Betrag? 

Welche der folgenden ganzen Zahlen ist die größte?

Welche der folgenden Aussagen ist richtig?

Weiter

Karteikarten in Ganze Zahlen60

Lerne jetzt

Wie heißt unser Zahlensystem? 


Zehnersystem. Die zehn Ziffern 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 genügen, um jede beliebige Zahl darzustellen.

Was sind natürliche Zahlen? 

Die Zahlen (1, 2, 3, 4, …), mit denen du abzählst, nennt man natürliche Zahlen

Was ist die Menge der ganzen Zahlen? 

Man erweitert die natürlichen Zahlen um ihre negativen Gegenzahlen und erhält die Menge der ganzen Zahlen

Was ist der Betrag einer Zahl? 

Der Abstand einer Zahl a von 0 wird ihr Betrag IaI genannt. Der Betrag einer Zahl ist immer positiv oder null.

Wann entstehen Brüche? 

Wenn man ein Ganzes oder mehrere Ganze in gleich große Teile zerlegt.

Was sagt der Zähler und Nenner eines Bruchs aus?

Am Nenner eines Bruches erkennt man, in wie viele Teile ins- gesamt zerlegt wird. 


Der Zähler gibt an, wie viele dieser Teile genommen werden.

Mehr zum Thema Ganze Zahlen

Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

  • Karteikarten & Quizze
  • KI-Lernassistent
  • Lernplaner
  • Probeklausuren
  • Intelligente Notizen
Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App! Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

Melde dich an für Notizen & Bearbeitung. 100% for free.

Fang an mit StudySmarter zu lernen, die einzige Lernapp, die du brauchst.

Jetzt kostenlos anmelden
Illustration