Login Anmelden

Select your language

Suggested languages for you:

Select your language

Suggested languages for you:
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Mitternachtsformel

Mitternachtsformel

In dieser Erklärung lernst Du die Mitternachtsformel kennen. Außerdem erfährst Du alles über die Diskriminante der Mitternachtsformel und lernst, wie Du die sie anwenden kannst und wie die Mitternachtsformel-Herleitung aussieht. Außerdem kannst Du hier nachlesen, was die Mitternachtsformel mit der pq-Formel zu tun hat. Ganz unten findest Du zudem passende Aufgaben.

Mitternachtsformel – Grundwissen

Die Mitternachtsformel ist eine Formel, die Du nutzen kannst, um die Nullstellen einer quadratischen Funktion zu berechnen. Daher solltest Du vorab wissen, was eine quadratische Funktion ist und wie Nullstellen definiert sind.

Wiederholung quadratische Funktion

Eine quadratische Funktion ist eine Funktion der Form \[ax^2+bx+c,\] wobei die Koeffizienten \(a\), \(b\) und \(c\) sowie das \(x\) aus den reellen Zahlen sind. Außerdem darf \(a\) nicht Null sein.

Graphen quadratischer Funktionen sind parabelförmig und besitzen maximal zwei Nullstellen.

Mehr darüber erfährst Du in der Erklärung Quadratische Funktionen.

Wiederholung Nullstellen von Funktionen

Die Nullstelle einer Funktion ist eine Zahl \(x_0\) aus der Definitionsmenge der Funktion \(f\), für die \[f(x_0)=0\] gilt.

Graphisch bezeichnet die Nullstelle den x-Wert des Schnitt- oder Berührpunktes einer Funktion \(f\) mit der x-Achse.

Alles Wichtige zu Nullstellen erfährst Du unter Nullstelle berechnen.

Mitternachtsformel einfach erklärt

Der Name der „Mitternachtsformel“ hat nicht so viel mit ihrem eigentlichen Zweck zu tun. Ihr Name stammt von der Vorstellung, dass alle Lernenden, selbst wenn sie um Mitternacht geweckt werden, diese Formel aufsagen können.

Mitternachtsformel – Formel

Ein anderer Name für diese Formel ist die „\(abc\)-Formel“. Er leitet sich von den drei Werten \(a\), \(b\) und \(c\) ab, die in diese Formel eingesetzt werden.

Mit der Mitternachtsformel können die Lösungen einer quadratischen Gleichung der Form \[0=ax^2+bx+c\] bestimmt werden. Sie lautet \[x_{1,2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}.\]

Das Zeichen \(\pm\) bedeutet, dass Du die gesamte Formel zweimal berechnest: einmal mit Plus (\(+\)) und einmal mit Minus (\(-\)). Somit bekommst Du meist auch zwei verschiedene Werte \(x_1\) und \(x_2\) heraus.

Die Lösungen der quadratischen Gleichung \(0=ax^2+bx+c\) sind dann die Nullstellen der quadratischen Funktion \(f(x)=ax^2+bx+c\).

Diskriminante Mitternachtsformel

Ein Teil dieser Formel bildet die sogenannte „Diskriminante“ der Mitternachtsformel. Dieses Wort kommt aus dem lateinischen und bedeutet so viel wie „unterscheiden“.

Die Diskriminante \(D\) ist der Term \(b^2-4ac\), der in der Mitternachtsformel unter der Wurzel steht. Sie gibt Dir eine Auskunft darüber, wie viele Lösungen eine quadratische Gleichung besitzt. Das erkennst Du an ihrem Vorzeichen:

  • \(D>0\): Die quadratische Gleichung besitzt zwei Lösungen
  • \(D=0\): Die quadratische Gleichung eine Lösung
  • \(D<0\): Die quadratische Gleichung besitzt keine Lösung

So kannst Du also bereits vorab erkennen, wie viele Lösungen die quadratische Gleichung besitzt, indem Du die Werte \(a\), \(b\) und \(c\) in die Diskriminante einsetzt und ihr Vorzeichen berechnest.

Mitternachtsformel – Beispiel

In den folgenden Beispielen der Mitternachtsformel siehst Du die allgemeine Anwendung sowie Spezialfälle der Mitternachtsformel für bestimmte quadratische Gleichungen.

Mitternachtsformel anwenden

Allgemein ist es hilfreich, vorab die Diskriminante zu bestimmen, um die Anzahl der Lösungen für die quadratische Gleichung zu kennen. Danach kannst Du dann die bekannten Werte in die Mitternachtsformel einsetzen.

Löse die quadratische Gleichung \(0=2x^2-8x+6\).

Zuerst liest Du ab, welche Werte die Variablen \(a\), \(b\) und \(c\) besitzen. Achte dabei unbedingt auf die Vorzeichen:

  • \(a=2\)
  • \(b=-8\)
  • \(c=6\)

Nun kannst Du diese Werte zunächst in die Formel der Diskriminante einsetzen: \begin{align}D&=b^2-4ac\\[0.1cm] &=(-8)^2-4 \cdot 2\cdot 6\\[0.1cm]&=64-48\\[0.1cm]&=16\end{align}

Damit ist also \(D>0\) und es existieren zwei Lösungen der quadratischen Gleichung. Diese bestimmst Du nun mit der Mitternachtsformel. Dabei beginnst Du entweder mit dem \(-\) oder dem \(+\): \begin{align}x_{1}&=\frac{-b+ \sqrt{b^2-4ac}}{2a}\\[0.2cm] &=\frac{-(-8)+ \sqrt{(-8)^2-4\cdot 2 \cdot 6}}{2\cdot 2}\\[0.2cm] &= \frac{8+ \sqrt{16}}{4}\\[0.2cm] &= 3\end{align} Die erste Lösung für die quadratische Gleichung ist also \(x_1=3\). Nun rechnest Du das gleiche noch mit \(-\) aus:\begin{align}x_{1}&=\frac{-b- \sqrt{b^2-4ac}}{2a}\\[0.2cm] &= \frac{8- \sqrt{16}}{4}\\[0.2cm] &= 1\end{align}

Die zweite Lösung für die quadratische Gleichung ist demnach \(x_2=1\).

So weit, so gut. Doch was passiert, wenn die Diskriminante zum Beispiel kleiner als 0 ist?

Löse die quadratische Gleichung \(0=2x^2-8x+10\).

Auch hier liest Du wieder die Werte ab:

  • \(a=2\)
  • \(b=-8\)
  • \(c=10\)

Berechne dann die Diskriminante: \begin{align}D&=b^2-4ac\\[0.1cm] &=(-8)^2-4 \cdot 2\cdot 10\\[0.1cm]&=64-80\\[0.1cm]&=-16\end{align}

Da die Diskriminante unter einer Wurzel steht und negativ ist, kann hier keine Lösung für die quadratische Gleichung gefunden werden. Es ist im Bereich der reellen Zahlen nicht möglich, Wurzeln aus negativen Zahlen zu ziehen.

Somit brauchst Du die Werte nicht weiter in die Mitternachtsformel einzusetzen und bist fertig mit der Aufgabe.

Spezialfall Mitternachtsformel ohne b

Bei manchen quadratischen Gleichungen taucht kein Term mit \(x\) auf. Das \(b\) ist somit 0. Die quadratische Gleichung lässt sich weiterhin mit der Mitternachtsformel lösen, allerdings gibt es einen Weg, der noch schneller ist: Schreibe die quadratische Gleichung so um, dass das \(x^2\) allein steht und ziehe auf beiden Seiten die Wurzel.

Ein Beispiel dafür ist die folgende quadratische Gleichung: \[3x^2-27=0\]

Hier kannst Du also so vorgehen: \begin{align} 3x^2-27&=0 &&|+27 \\ 3x^2&=27 &&|:3 \\ x^2&=9 &&|\sqrt \\ \\ x_{1,2}&=\pm 3\end{align}

Die Lösungen, die Du mithilfe der Mitternachtsformel erhalten würdest, wären dabei die gleichen.

Spezialfall Mitternachtsformel ohne c

Auch für den Fall, dass das \(c\) in der quadratischen Gleichung gleich 0 ist, gibt es eine schnellere Lösung. Du kannst in dem Fall das \(x\) ausklammern und die Nullstellen der beiden Faktoren separat berechnen.

Löse die quadratische Gleichung \(0=2x^2+8x\).

Klammere also zuerst das \(x\) aus. Du erhältst \[0=x(2x+8).\]

Nun kannst Du zwei einzelne lineare Gleichungen bilden: \[0=x\] und \[0=2x+8\]

Diese löst Du wie gewohnt auf. Die erste Lösung ist dabei direkt ablesbar: \(x_1=0\). Für die zweite Lösung musst Du etwas umformen: \begin{align} 2x+8&=0 &&|-8 \\ 2x&=-8 &&|:2 \\ x&=-4\end{align}

Die zweite Lösung ist demnach \(x_2=-4\).

Mitternachtsformel – Herleitung

Doch woher stammt diese Mitternachtsformel für quadratische Gleichungen überhaupt?

Die Mitternachtsformel entsteht, indem die allgemeine quadratische Gleichung \[ax^2+bx+c\] nach \(x\) aufgelöst wird. Das ist ein wenig komplizierter als das Anwenden der Formel und vor allem nicht so intuitiv, deshalb kannst Du Dir die Herleitung in einzelnen Schritten ansehen.

BeschreibungHerleitung
1. Subtrahiere \(c\) von der allgemeinen quadratischen Gleichung und multipliziere dann mit \(4a\).\begin{align}ax^2+bx+c&=0 &&| -c\\ ax^2+bx&=-c &&| \cdot 4a \\ 4ax^2 + 4abx &= - 4ac \end{align}
2. Addiere auf beiden Seiten \(b^2\), um auf der linken Seite die erste binomische Formel rückwärts anzuwenden.\begin{align}4ax^2 + 4abx +b^2&= - 4ac+b^2 \\ (2ax+b)^2&=-4ac+b^2\end{align}
3. Das \(x\) steht weiterhin nur auf der linken Seite der Gleichung. Um nach \(x\) aufzulösen, ziehe als Nächstes auf beiden Seiten die Wurzel.\begin{align} (2ax+b)^2&=-4ac+b^2 &&|\sqrt \\ \\ 2ax+b&=\pm\sqrt{-4ac+b^2}\end{align}
4. Nun kannst Du noch das \(b\) subtrahieren und zuletzt durch \(2a\) teilen, um linksdas \(x\) allein stehen zu haben. \begin{align} 2ax+b&=\pm\sqrt{-4ac+b^2} &&| -b \\[0.1cm] 2ax&=\pm\sqrt{-4ac+b^2}-b &&|:2a\\[0.2cm]x&=\frac{\pm\sqrt{-4ac+b^2}-b}{2a} \end{align}
5. Zuletzt sortierst Du ein wenig um und erhältst die Mitternachtsformel. Da es wegen des \(\pm\) zwei mögliche Lösungen gibt, wird aus dem \(x\) ein \(x_{1,2}\).\begin{align} x_{1,2}&=\frac{-b\pm\sqrt{-4ac+b^2}}{2a} \end{align}

Mitternachtsformel – pq-Formel

Eine andere Möglichkeit zum Lösen einer quadratischen Gleichung bzw. zum Bestimmen der Nullstellen einer quadratischen Funktion ist die sogenannte „pq-Formel“.

pq-Formel

Ist eine quadratische Funktion der Form \(f(x)=x^2+bx+c\) gegeben, so liegt die Funktion in Normalform vor. Bei quadratischen Funktionen in Normalform ist also \(a=1\). Anstelle von \(b\) und \(c\) werden hier meist die Parameter p und q verwendet: \[f(x)=x^2+px+q\]

Jede quadratische Funktion kann in Normalform geschrieben werden. Dafür werden die Parameter \(b\) und \(c\) durch \(a\) geteilt:

  • \(p=\frac{b}{a}\)
  • \(q=\frac{c}{a}\)

Setzt Du also \(a=1\) sowie \(p\) anstelle von \(b\) und \(q\) anstelle von \(c\) in die Mitternachtsformel ein, erhältst Du nach einigen Umformungen die pq-Formel: \begin{align} x_{1,2}&=\frac{- p\pm\sqrt{-4\cdot 1 \cdot q+p^2}}{2\cdot 1} \\[0.2cm] &=-\frac{p}{2}\pm\frac{\sqrt{-4 q+p^2}}{\sqrt{4}}\\[0.2cm] &=-\frac{p}{2}\pm \sqrt{-\frac{4q}{4}+\frac{p^2}{4}} \\[0.2cm] &=-\frac{p}{2}\pm \sqrt{-q+\left(\frac{p}{2}\right)^2} \end{align}

Die pq-Formel lautet \[x_{1,2}=-\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2-q}\]

Mit ihr können die Lösungen für quadratische Gleichungen der Form \(0=x^2+px+q\) gefunden werden.

Weitere Informationen und Beispiele zur pq-Formel findest Du in der Erklärung pq Formel.

Mitternachtsformel – Aufgaben

Na, könntest Du die Formel schon aufsagen, wenn Du um Mitternacht geweckt und danach gefragt wirst?

Keine Sorge, das wird hier nicht von Dir verlangt! Du kannst sie Dir so oft ansehen, wie Du willst, um die folgenden Aufgaben zu lösen.

Mitternachtsformel – Aufgabe 1

Bestimme die Anzahl der Lösungen der quadratischen Gleichung \[0=-3x^2-7x-5.\]

Lösung

Um die Anzahl der Lösungen der gegebenen quadratischen Gleichung herauszufinden, berechnest Du die Diskriminante. Zunächst liest Du dafür wieder die Parameter ab:

  • \(a=-3\)
  • \(b=-7\)
  • \(c=-5\)

Nun kannst Du sie in die Formel für die Diskriminante einsetzen:

\begin{align}D&=b^2-4ac\\[0.1cm] &=(-7)^2-4 \cdot (-3)\cdot (-5)\\[0.1cm]&=49-60\\[0.1cm]&=-11\end{align}

Die Diskriminante ist negativ, es gilt also \(D<0\). Somit besitzt die quadratische Gleichung keine Lösung.

Mitternachtsformel – Aufgabe 2

Bestimme die Nullstellen für die quadratische Funktion \(f(x)=2x^2-3x-5\).

Lösung

Hier kannst Du direkt mit der Mitternachtsformel starten, da die Anzahl der Nullstellen nicht konkret gefragt ist. Lies also wieder die Parameter ab und setze sie dann in die Mitternachtsformel ein:

  • \(a=2\)
  • \(b=-3\)
  • \(c=-5\)

Denk auch wieder daran, die Rechnung einmal mit \(-\) und einmal mit \(+\) durchzuführen.

\begin{align}x_{1}&=\frac{-b+ \sqrt{b^2-4ac}}{2a}\\[0.2cm] &=\frac{-(-3)+ \sqrt{(-3)^2-4\cdot 2 \cdot (-5)}}{2\cdot 2}\\[0.2cm] &= \frac{3+ \sqrt{49}}{4}\\[0.2cm] &=\frac{3+7}{4}\\[0.2cm]&= \text{2,5}\end{align} Die erste Nullstelle liegt also bei \(x_1=\text{2,5}\). Nun rechnest Du das gleiche noch mit \(-\) aus:\begin{align}x_{1}&=\frac{-b- \sqrt{b^2-4ac}}{2a}\\[0.2cm] &= \frac{3- 7}{4}\\[0.2cm] &= -1\end{align}

Die zweite Nullstelle ist demnach \(x_2=-1\).

Mitternachtsformel – Aufgabe 3

Gegeben ist die quadratische Gleichung \(2x^2+6x=-\text{4,5}\).

a) Bestimme die Anzahl der Lösungen der quadratischen Gleichung.

b) Löse die quadratische Gleichung.

Lösung

a) Hier ist ein wenig Trickserei nötig, bevor Du die Diskriminante berechnen kannst. Zuerst sollte die quadratische Gleichung so umgeformt werden, dass auf einer Seite die 0 steht, damit Du die Parameter \(a\), \(b\) und \(c\) ablesen kannst. Dafür addierst Du auf beiden Seiten \(\text{4,5}\): \begin{align}2x^2+6x&=-\text{4,5} &&|+\text{4,5} \\ 2x^2+6x +\text{4,5}&=0 \end{align}

Nun liest Du \(a\), \(b\) und \(c\) ab:

  • \(a=2\)
  • \(b=6\)
  • \(c=\text{4,5}\)

Jetzt kannst Du die Diskriminante berechnen: \begin{align}D&=b^2-4ac\\[0.1cm] &=6^2-4 \cdot 2\cdot \text{4,5}\\[0.1cm]&=36-36\\[0.1cm]&=0\end{align}

Es gilt also \(D=0\), weshalb es nur eine Lösung gibt.

b) Setze nun die Parameter in die Mitternachtsformel ein. Da Du die Diskriminante schon berechnet hast und sie 0 ist, kannst Du die Wurzel direkt weglassen und musst auch nicht zwei Rechnungen durchführen. \begin{align}x&=\frac{-b}{2a}\\[0.2cm] &=\frac{-6}{2\cdot 2}\\[0.2cm] &= \frac{-6}{4} \\[0.2cm]&= -\text{1,5}\end{align}

Die Lösung der quadratischen Gleichung ist also \(x=-\text{1,5}\).

Mitternachtsformel – Das Wichtigste

  • Mit der Mitternachtsformel können die Lösungen einer quadratischen Gleichung der Form \[0=ax^2+bx+c\] bzw. die Nullstellen quadratischer Funktionen der Form \(f(x)=ax^2+bx+c\) bestimmt werden. Sie lautet \[x_{1,2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}.\]
  • Die Diskriminante\(D\) ist der Term \(b^2-4ac\), der in der Mitternachtsformel unter der Wurzel steht. Sie gibt Dir eine Auskunft darüber, wie viele Lösungen eine quadratische Gleichung besitzt:
    • \(D>0\): Zwei Lösungen

      \(D=0\): Eine Lösung

      \(D<0\): Keine Lösung

  • Ist \(a=1\), kann die quadratische Gleichung mit der pq-Formel gelöst werden: \[x_{1,2}=-\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2-q}\]


Nachweise

  1. Gehrke (2016). Brückenkurs Mathematik: Fit für Mathematik im Studium. Walter de Gruyter GmbH & Co KG.
  2. Walz (2018). Gleichungen und Ungleichungen: Klartext für Nichtmathematiker. Springer-Verlag.

Häufig gestellte Fragen zum Thema Mitternachtsformel

Die Buchstaben a, b und c sind sogenannte Parameter für eine quadratische Gleichung der Form 0=ax²+bx+c. Diese können in der Gleichung abgelesen und in die Mitternachtsformel eingesetzt werden.

Die abc-Formel, auch Mitternachtsformel genannt, ist eine Lösungsformel, mit der die Lösungen einer quadratischen Gleichung bzw. die Nullstellen einer quadratischen Funktion bestimmt werden können.

Die Mitternachtsformel kann angewandt werden, wenn die Nullstellen einer quadratischen Funktion f(x)=ax²+bx+c oder die Lösungen einer quadratischen Gleichung 0=ax²+bx+c gesucht sind.

Die Mitternachtsformel heißt auch abc-Formel oder Lösungsformel für quadratische Gleichungen.

Finales Mitternachtsformel Quiz

Frage

Entscheide, welche die richtige Formel der Mitternachtsformel ist.


Antwort anzeigen

Antwort

\[x_{1,2}=\frac{-b\pm \sqrt{b^2-4c}}{2a}.\]  

Frage anzeigen

Frage

Es ist folgende quadratische Gleichung gegeben: \[0=-3x^2+4x-11\]


Färbe die Zahlen, die in der Mitternachtsformel für die Koeffizienten \(\color{#1478c8}a\color{#000000}\), \(\color{#00dcb4}b\color{#000000}\) und \(\color{#fa3273}c\color{#000000}\) stehen, entsprechend ein.

Antwort anzeigen

Antwort


Das \(\color{#1478c8}a\color{#000000}\) steht für die Zahl vor dem \(x^2\), das \(\color{#00dcb4}b\color{#000000}\) bezeichnet die Zahl vor dem \(x\) und \(\color{#fa3273}c\color{#000000}\) gibt die alleinstehende Zahl an. \[0=\color{#1478c8} -3 \color{#000000} x^2+ \color{#00dcb4}4\color{#000000}x\color{#fa3273}-11\color{#000000}\]

Frage anzeigen

Frage

Für eine quadratische Funktion wird die Diskriminante \(D\) der Mitternachtsformel gleich 0.


Entscheide, was das für den Funktionsgraphen bedeutet.

Antwort anzeigen

Antwort

Der Graph der quadratischen Funktion berührt die x-Achse in genau einem Punkt.

Frage anzeigen

Frage

Berechne die Nullstellen der Funktion \(f(x))-x^2+3x+4\) mithilfe der Mitternachtsformel.

Antwort anzeigen

Antwort

Lies zunächst die Parameter ab: \(a=-1\), \(b=3\) und \(c=4\)


Setze sie dann in die Mitternachtsformel ein: \begin{align}x_{1}&=\frac{-b\pm \sqrt{b^2-4ac}}{2a}\\[0.2cm] &=\frac{-3\pm \sqrt{3^2-4\cdot (-1) \cdot 4}}{2\cdot (-1)}\\[0.2cm] &= \frac{-3\pm \sqrt{9+16}}{(-2)}\\[0.2cm] &=\frac{-3\pm 5}{(-2)}\\[0.2cm] x_1&=-1 \\[0.2cm] x_2&=4\end{align}

Frage anzeigen

Frage

Nenne einen anderen Namen für die Mitternachtsformel.

Antwort anzeigen

Antwort

abc-Formel

Frage anzeigen

Frage

Durch die Anwendung der Mitternachtsformel für eine Funktion \(f(x)\) ergeben sich die folgenden Lösungen. \[x_1=1, x_2=3\]

Erkläre, was das über die Funktion aussagt.

Antwort anzeigen

Antwort

Die Nullstellen der Funktion \(f(x)\) liegen bei \(x_1=1\) und \(x_2=3\). 

Frage anzeigen

Frage

Entscheide, wie die Mitternachtsformel noch genannt werden kann.

Antwort anzeigen

Antwort

pq-Formel

Frage anzeigen

Frage

Bewerte folgende Aussage: 


Mit der Mitternachtsformel können die Lösungen einer linearen Gleichung der Form \[0=mx+b\] bestimmt werden.

Antwort anzeigen

Antwort

Die Antwort ist falsch. Mit der Mitternachtsformel können die Lösungen einer quadratischen Gleichung der Form \[0=ax^2+bx+c\] bestimmt werden.

Frage anzeigen

Frage

Sieh dir folgende Mitternachtsformel mit eingesetzten Parametern an. Mit ihr werden die Nullstellen der Funktion \(f(x)\) bestimmt. Lies daraus die Werte für \(a\), \(b\) und \(c\) ab und bestimme die zugehörige Funktionsgleichung von \(f(x\). \[x_{1,2}=\frac{-3\pm \sqrt{3^2-4\cdot7}}{2}\] 


Antwort anzeigen

Antwort

Die zugehörige Funktion lautet \[f(x)=x^2+3x+7.\]


Frage anzeigen

Frage

Bewerte die folgende Aussage: 


Die Lösungen der quadratischen Gleichung \(0=ax^2+bx+c\) sind die Nullstellen der quadratischen Funktion \(f(x)=ax^2+bx+c\).


Antwort anzeigen

Antwort

Die Aussage ist wahr.

Frage anzeigen

Frage

Entscheide, welche der Gleichungen nicht mithilfe der Mitternachtsformel gelöst werden können.

Antwort anzeigen

Antwort

\(3x-7=0\)

Frage anzeigen

Frage

Ordne den Werten der Diskriminante der Mitternachtsformel einen passende Aussage zu.


a) \(D=0\)

b) \(D<0\)

Antwort anzeigen

Antwort

a) Die quadratische Gleichung besitzt genau eine Lösung.

b) Die quadratische Gleichung besitzt genau zwei Lösungen.

Frage anzeigen

Frage

Nenne die Formel, die Du neben der Mitternachtsformel noch nutzen kannst, um die Lösung der Gleichung \(x^2+3x-7\) u bestimmen.

Antwort anzeigen

Antwort

pq-Formel

Frage anzeigen

Frage

Beschreibe, wie Du beim Lösen einer quadratischen Gleichung vorgehen kannst, wenn \(c=0\) ist, ohne die Mitternachtsformel zu benutzen.

Antwort anzeigen

Antwort

Du kannst in dem Fall das \(x\) ausklammern und die Nullstellen der beiden Faktoren separat berechnen.

Frage anzeigen

Frage

Bestimme die Anzahl der Lösungen für die quadratische Gleichung \(0=x^2-x+1\).



Antwort anzeigen

Antwort

Zuerst liest Du ab, welche Werte die Variablen  \(a\), \(b\) und \(c\) besitzen:

\(a=1\), \(b=-1\) und \(c=1\)


Nun kannst Du diese Werte in die Formel der Diskriminante einsetzen: \begin{align}D&=b^2-4ac\\[0.1cm] &=(-1)^2-4 \cdot 1 \cdot 1 \\[0.1cm] &=1-4\\[0.1cm]&=-3 \end{align} Es gilt also \(D<0\) und damit gibt es keine Lösung für die gegebene quadratische Gleichung.

Frage anzeigen

Mehr zum Thema Mitternachtsformel
60%

der Nutzer schaffen das Mitternachtsformel Quiz nicht! Kannst du es schaffen?

Quiz starten

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Melde dich an für Notizen & Bearbeitung. 100% for free.

Get FREE ACCESS to all of our study material, tailor-made!

Over 10 million students from across the world are already learning smarter.

Get Started for Free
Illustration