StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
Americas
Europe
Die Mitternachtsformel ist eine der wichtigsten Lösungsformeln. Du benutzt sie zum Lösen von Gleichungen der Form \(ax^2+bx+c=0\). In dieser Erklärung erfährst Du alles über die Mitternachtsformel. Bekanntlich hat sie ihren Namen daher, dass jeder Schüler diese Formel, selbst um Mitternacht auswendig können muss. So wichtig ist diese Formel.Die Mitternachtsformel wird benutzt, um die Lösungen der Gleichung \(ax^2+bx+c=0\) zu finden. Ein…
Entdecke über 200 Millionen kostenlose Materialien in unserer App
Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenDie Mitternachtsformel ist eine der wichtigsten Lösungsformeln. Du benutzt sie zum Lösen von Gleichungen der Form \(ax^2+bx+c=0\). In dieser Erklärung erfährst Du alles über die Mitternachtsformel. Bekanntlich hat sie ihren Namen daher, dass jeder Schüler diese Formel, selbst um Mitternacht auswendig können muss. So wichtig ist diese Formel.
Die Mitternachtsformel wird benutzt, um die Lösungen der Gleichung \(ax^2+bx+c=0\) zu finden. Ein anderer Name für diese Formel ist die „\(abc\)-Formel“. Er leitet sich von den drei Werten \(a\), \(b\) und \(c\) ab, die in diese Formel eingesetzt werden.
Mit der Mitternachtsformel können die Lösungen einer quadratischen Gleichung der Form \[0=ax^2+bx+c\] bestimmt werden. Die Formel lautet \[x_{1,2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}.\]
Das Zeichen \(\pm\) bedeutet, dass Du die gesamte Formel zweimal berechnest: einmal mit Plus (\(+\)) und einmal mit Minus (\(-\)). Somit bekommst Du meist auch zwei verschiedene Werte \(x_1\) und \(x_2\) heraus.
Die Lösungen der quadratischen Gleichung \(0=ax^2+bx+c\) sind dann die Nullstellen der quadratischen Funktion \(f(x)=ax^2+bx+c\).
Die Diskriminante \(D\) ist der Term \(b^2-4ac\), der in der Mitternachtsformel unter der Wurzel steht. Sie gibt Dir eine Auskunft darüber, wie viele Lösungen eine quadratische Gleichung besitzt. Das erkennst Du an ihrem Vorzeichen:
So kannst Du also bereits vorab erkennen, wie viele Lösungen die quadratische Gleichung besitzt, indem Du die Werte \(a\), \(b\) und \(c\) in die Diskriminante einsetzt und ihr Vorzeichen berechnest.
In den folgenden Beispielen der Mitternachtsformel siehst Du die allgemeine Anwendung sowie Spezialfälle der Mitternachtsformel für bestimmte quadratische Gleichungen.
Allgemein ist es hilfreich, vorab die Diskriminante zu bestimmen, um die Anzahl der Lösungen für die quadratische Gleichung zu kennen. Danach kannst Du dann die bekannten Werte in die Mitternachtsformel einsetzen.
Löse die quadratische Gleichung \(0=2x^2-8x+6\).
Zuerst liest Du ab, welche Werte die Variablen \(a\), \(b\) und \(c\) besitzen. Achte dabei unbedingt auf die Vorzeichen:
Nun kannst Du diese Werte zunächst in die Formel der Diskriminante einsetzen: \begin{align}D&=b^2-4ac\\[0.1cm] &=(-8)^2-4 \cdot 2\cdot 6\\[0.1cm]&=64-48\\[0.1cm]&=16\end{align}
Damit ist also \(D>0\) und es existieren zwei Lösungen der quadratischen Gleichung. Diese bestimmst Du nun mit der Mitternachtsformel. Dabei beginnst Du entweder mit dem \(-\) oder dem \(+\): \begin{align}x_{1}&=\frac{-b+ \sqrt{b^2-4ac}}{2a}\\[0.2cm] &=\frac{-(-8)+ \sqrt{(-8)^2-4\cdot 2 \cdot 6}}{2\cdot 2}\\[0.2cm] &= \frac{8+ \sqrt{16}}{4}\\[0.2cm] &= 3\end{align} Die erste Lösung für die quadratische Gleichung ist also \(x_1=3\). Nun rechnest Du das gleiche noch mit \(-\) aus:\begin{align}x_{1}&=\frac{-b- \sqrt{b^2-4ac}}{2a}\\[0.2cm] &= \frac{8- \sqrt{16}}{4}\\[0.2cm] &= 1\end{align}
Die zweite Lösung für die quadratische Gleichung ist demnach \(x_2=1\).
So weit, so gut. Doch was passiert, wenn die Diskriminante zum Beispiel kleiner als 0 ist?
Löse die quadratische Gleichung \(0=2x^2-8x+10\).
Auch hier liest Du wieder die Werte ab:
Berechne dann die Diskriminante: \begin{align}D&=b^2-4ac\\[0.1cm] &=(-8)^2-4 \cdot 2\cdot 10\\[0.1cm]&=64-80\\[0.1cm]&=-16\end{align}
Da die Diskriminante unter einer Wurzel steht und negativ ist, kann hier keine Lösung für die quadratische Gleichung gefunden werden. Es ist im Bereich der reellen Zahlen nicht möglich, Wurzeln aus negativen Zahlen zu ziehen.
Somit brauchst Du die Werte nicht weiter in die Mitternachtsformel einzusetzen und bist fertig mit der Aufgabe.
Bei manchen quadratischen Gleichungen taucht kein Term mit \(x\) auf. Das \(b\) ist somit 0. Die quadratische Gleichung lässt sich weiterhin mit der Mitternachtsformel lösen, allerdings gibt es einen Weg, der noch schneller ist: Schreibe die quadratische Gleichung so um, dass das \(x^2\) allein steht und ziehe auf beiden Seiten die Wurzel.
Ein Beispiel dafür ist die folgende quadratische Gleichung: \[3x^2-27=0\]
Hier kannst Du also so vorgehen: \begin{align} 3x^2-27&=0 &&|+27 \\ 3x^2&=27 &&|:3 \\ x^2&=9 &&|\sqrt \\ \\ x_{1,2}&=\pm 3\end{align}
Die Lösungen, die Du mithilfe der Mitternachtsformel erhalten würdest, wären dabei die gleichen.
Auch für den Fall, dass das \(c\) in der quadratischen Gleichung gleich 0 ist, gibt es eine schnellere Lösung. Du kannst in dem Fall das \(x\) ausklammern und die Nullstellen der beiden Faktoren separat berechnen.
Löse die quadratische Gleichung \(0=2x^2+8x\).
Klammere also zuerst das \(x\) aus. Du erhältst \[0=x(2x+8).\]
Nun kannst Du zwei einzelne lineare Gleichungen bilden: \[0=x\] und \[0=2x+8\]
Diese löst Du wie gewohnt auf. Die erste Lösung ist dabei direkt ablesbar: \(x_1=0\). Für die zweite Lösung musst Du etwas umformen: \begin{align} 2x+8&=0 &&|-8 \\ 2x&=-8 &&|:2 \\ x&=-4\end{align}
Die zweite Lösung ist demnach \(x_2=-4\).
Doch woher stammt diese Mitternachtsformel für quadratische Gleichungen überhaupt?
Die Mitternachtsformel entsteht, indem die allgemeine quadratische Gleichung \[ax^2+bx+c\] nach \(x\) aufgelöst wird. Das ist ein wenig komplizierter als das Anwenden der Formel und vor allem nicht so intuitiv, deshalb kannst Du Dir die Herleitung in einzelnen Schritten ansehen.
Beschreibung | Herleitung |
1. Subtrahiere \(c\) von der allgemeinen quadratischen Gleichung und multipliziere dann mit \(4a\). | \begin{align}ax^2+bx+c&=0 &&| -c\\ ax^2+bx&=-c &&| \cdot 4a \\ 4ax^2 + 4abx &= - 4ac \end{align} |
2. Addiere auf beiden Seiten \(b^2\), um auf der linken Seite die erste binomische Formel rückwärts anzuwenden. | \begin{align}4ax^2 + 4abx +b^2&= - 4ac+b^2 \\ (2ax+b)^2&=-4ac+b^2\end{align} |
3. Das \(x\) steht weiterhin nur auf der linken Seite der Gleichung. Um nach \(x\) aufzulösen, ziehe als Nächstes auf beiden Seiten die Wurzel. | \begin{align} (2ax+b)^2&=-4ac+b^2 &&|\sqrt \\ \\ 2ax+b&=\pm\sqrt{-4ac+b^2}\end{align} |
4. Nun kannst Du noch das \(b\) subtrahieren und zuletzt durch \(2a\) teilen, um linksdas \(x\) allein stehen zu haben. | \begin{align} 2ax+b&=\pm\sqrt{-4ac+b^2} &&| -b \\[0.1cm] 2ax&=\pm\sqrt{-4ac+b^2}-b &&|:2a\\[0.2cm]x&=\frac{\pm\sqrt{-4ac+b^2}-b}{2a} \end{align} |
5. Zuletzt sortierst Du ein wenig um und erhältst die Mitternachtsformel. Da es wegen des \(\pm\) zwei mögliche Lösungen gibt, wird aus dem \(x\) ein \(x_{1,2}\). | \begin{align} x_{1,2}&=\frac{-b\pm\sqrt{-4ac+b^2}}{2a} \end{align} |
Eine andere Möglichkeit zum Lösen einer quadratischen Gleichung bzw. zum Bestimmen der Nullstellen einer quadratischen Funktion ist die sogenannte „pq-Formel“.
Ist eine quadratische Funktion der Form \(f(x)=x^2+bx+c\) gegeben, so liegt die Funktion in Normalform vor. Bei quadratischen Funktionen in Normalform ist also \(a=1\). Anstelle von \(b\) und \(c\) werden hier meist die Parameter p und q verwendet: \[f(x)=x^2+px+q\]
Jede quadratische Funktion kann in Normalform geschrieben werden. Dafür werden die Parameter \(b\) und \(c\) durch \(a\) geteilt:
Setzt Du also \(a=1\) sowie \(p\) anstelle von \(b\) und \(q\) anstelle von \(c\) in die Mitternachtsformel ein, erhältst Du nach einigen Umformungen die pq-Formel: \begin{align} x_{1,2}&=\frac{- p\pm\sqrt{-4\cdot 1 \cdot q+p^2}}{2\cdot 1} \\[0.2cm] &=-\frac{p}{2}\pm\frac{\sqrt{-4 q+p^2}}{\sqrt{4}}\\[0.2cm] &=-\frac{p}{2}\pm \sqrt{-\frac{4q}{4}+\frac{p^2}{4}} \\[0.2cm] &=-\frac{p}{2}\pm \sqrt{-q+\left(\frac{p}{2}\right)^2} \end{align}
Die pq-Formel lautet \[x_{1,2}=-\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2-q}\]
Mit ihr können die Lösungen für quadratische Gleichungen der Form \(0=x^2+px+q\) gefunden werden.
Weitere Informationen und Beispiele zur pq-Formel findest Du in der Erklärung pq Formel.
Na, könntest Du die Formel schon aufsagen, wenn Du um Mitternacht geweckt und danach gefragt wirst?
Keine Sorge, das wird hier nicht von Dir verlangt! Du kannst sie Dir so oft ansehen, wie Du willst, um die folgenden Aufgaben zu lösen.
Bestimme die Anzahl der Lösungen der quadratischen Gleichung \[0=-3x^2-7x-5.\]
Lösung
Um die Anzahl der Lösungen der gegebenen quadratischen Gleichung herauszufinden, berechnest Du die Diskriminante. Zunächst liest Du dafür wieder die Parameter ab:
Nun kannst Du sie in die Formel für die Diskriminante einsetzen:
\begin{align}D&=b^2-4ac\\[0.1cm] &=(-7)^2-4 \cdot (-3)\cdot (-5)\\[0.1cm]&=49-60\\[0.1cm]&=-11\end{align}
Die Diskriminante ist negativ, es gilt also \(D<0\). Somit besitzt die quadratische Gleichung keine Lösung.
Bestimme die Nullstellen für die quadratische Funktion \(f(x)=2x^2-3x-5\).
Lösung
Hier kannst Du direkt mit der Mitternachtsformel starten, da die Anzahl der Nullstellen nicht konkret gefragt ist. Lies also wieder die Parameter ab und setze sie dann in die Mitternachtsformel ein:
Denk auch wieder daran, die Rechnung einmal mit \(-\) und einmal mit \(+\) durchzuführen.
\begin{align}x_{1}&=\frac{-b+ \sqrt{b^2-4ac}}{2a}\\[0.2cm] &=\frac{-(-3)+ \sqrt{(-3)^2-4\cdot 2 \cdot (-5)}}{2\cdot 2}\\[0.2cm] &= \frac{3+ \sqrt{49}}{4}\\[0.2cm] &=\frac{3+7}{4}\\[0.2cm]&= \text{2,5}\end{align} Die erste Nullstelle liegt also bei \(x_1=\text{2,5}\). Nun rechnest Du das gleiche noch mit \(-\) aus:\begin{align}x_{1}&=\frac{-b- \sqrt{b^2-4ac}}{2a}\\[0.2cm] &= \frac{3- 7}{4}\\[0.2cm] &= -1\end{align}
Die zweite Nullstelle ist demnach \(x_2=-1\).
Gegeben ist die quadratische Gleichung \(2x^2+6x=-\text{4,5}\).
a) Bestimme die Anzahl der Lösungen der quadratischen Gleichung.
b) Löse die quadratische Gleichung.
Lösung
a) Hier ist ein wenig Trickserei nötig, bevor Du die Diskriminante berechnen kannst. Zuerst sollte die quadratische Gleichung so umgeformt werden, dass auf einer Seite die 0 steht, damit Du die Parameter \(a\), \(b\) und \(c\) ablesen kannst. Dafür addierst Du auf beiden Seiten \(\text{4,5}\): \begin{align}2x^2+6x&=-\text{4,5} &&|+\text{4,5} \\ 2x^2+6x +\text{4,5}&=0 \end{align}
Nun liest Du \(a\), \(b\) und \(c\) ab:
Jetzt kannst Du die Diskriminante berechnen: \begin{align}D&=b^2-4ac\\[0.1cm] &=6^2-4 \cdot 2\cdot \text{4,5}\\[0.1cm]&=36-36\\[0.1cm]&=0\end{align}
Es gilt also \(D=0\), weshalb es nur eine Lösung gibt.
b) Setze nun die Parameter in die Mitternachtsformel ein. Da Du die Diskriminante schon berechnet hast und sie 0 ist, kannst Du die Wurzel direkt weglassen und musst auch nicht zwei Rechnungen durchführen. \begin{align}x&=\frac{-b}{2a}\\[0.2cm] &=\frac{-6}{2\cdot 2}\\[0.2cm] &= \frac{-6}{4} \\[0.2cm]&= -\text{1,5}\end{align}
Die Lösung der quadratischen Gleichung ist also \(x=-\text{1,5}\).
\(D=0\): Eine Lösung
\(D<0\): Keine Lösung
Ist \(a=1\), kann die quadratische Gleichung mit der pq-Formel gelöst werden: \[x_{1,2}=-\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2-q}\]
Die Buchstaben a, b und c sind sogenannte Parameter für eine quadratische Gleichung der Form 0=ax²+bx+c. Diese können in der Gleichung abgelesen und in die Mitternachtsformel eingesetzt werden.
Die abc-Formel, auch Mitternachtsformel genannt, ist eine Lösungsformel, mit der die Lösungen einer quadratischen Gleichung bzw. die Nullstellen einer quadratischen Funktion bestimmt werden können.
Die Mitternachtsformel kann angewandt werden, wenn die Nullstellen einer quadratischen Funktion f(x)=ax²+bx+c oder die Lösungen einer quadratischen Gleichung 0=ax²+bx+c gesucht sind.
Die Mitternachtsformel heißt auch abc-Formel oder Lösungsformel für quadratische Gleichungen.
Wie möchtest du den Inhalt lernen?
94% der StudySmarter Nutzer erzielen bessere Noten.
Jetzt anmelden94% der StudySmarter Nutzer erzielen bessere Noten.
Jetzt anmeldenWie möchtest du den Inhalt lernen?
Kostenloser mathe Spickzettel
Alles was du zu . wissen musst. Perfekt zusammengefasst, sodass du es dir leicht merken kannst!
Sei rechtzeitig vorbereitet für deine Prüfungen.
Teste dein Wissen mit spielerischen Quizzes.
Erstelle und finde Karteikarten in Rekordzeit.
Erstelle die schönsten Notizen schneller als je zuvor.
Hab all deine Lermaterialien an einem Ort.
Lade unzählige Dokumente hoch und habe sie immer dabei.
Kenne deine Schwächen und Stärken.
Ziele Setze dir individuelle Ziele und sammle Punkte.
Nie wieder prokrastinieren mit unseren Lernerinnerungen.
Sammle Punkte und erreiche neue Levels beim Lernen.
Lass dir Karteikarten automatisch erstellen.
Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.
Melde dich an für Notizen & Bearbeitung. 100% for free.