• :00Tage
  • :00Std
  • :00Min
  • 00Sek
Ein neues Zeitalter des Lernens steht bevorKostenlos anmelden
Login Anmelden

Select your language

Suggested languages for you:
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Dezimahlzahlen rechnen

Eine Dezimalzahl stellt keine natürliche Zahl dar. Eine Dezimalzahl wird eigentlich als Dezimalbruch bezeichnet, da sie eigentlich ein Bruch ist, nur in anderer Schreibweise. In der Dezimalschreibweise wird der Bruch als Kommazahl notiert.Jeder Bruch lässt sich also mit der Dezimalschreibweise darstellen.Folgende Brüche sind gegeben:12  ;  34   ;  78  ;  35100 In der Dezimalschreibweise sehen sie wie folgt aus:    12=0,5    34=0,75    78=0,87535100=0,35 Wie du sehen kannst, sind aus den Brüchen Kommazahlen geworden, die…

Von Expert*innen geprüfte Inhalte
Kostenlose StudySmarter App mit über 20 Millionen Studierenden
Mockup Schule

Entdecke über 200 Millionen kostenlose Materialien in unserer App

Dezimahlzahlen rechnen

Dezimahlzahlen rechnen
Illustration

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmelden

Nie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmelden
Illustration

Eine Dezimalzahl stellt keine natürliche Zahl dar. Eine Dezimalzahl wird eigentlich als Dezimalbruch bezeichnet, da sie eigentlich ein Bruch ist, nur in anderer Schreibweise. In der Dezimalschreibweise wird der Bruch als Kommazahl notiert.

Dezimalzahlen rechnen – Erklärung

Jeder Bruch lässt sich also mit der Dezimalschreibweise darstellen.

Folgende Brüche sind gegeben:

12 ; 34 ; 78 ; 35100

In der Dezimalschreibweise sehen sie wie folgt aus:

12=0,5 34=0,75 78=0,87535100=0,35

Wie du sehen kannst, sind aus den Brüchen Kommazahlen geworden, die mit einem Komma getrennt sind.

Aufbau von Dezimalzahlen

Eine Dezimalzahl (mathematisch korrekt: ein Dezimalbruch) ist demnach aufgebaut aus Stellen vor dem Komma und den sogenannten Nachkommastellen oder Dezimalen nach dem Komma. Die Nachkommastellen können ebenfalls in der Stellenwerttafel dargestellt werden.

Gegeben ist folgender Bruch:

32125=12,84

Alles, was vor dem Komma steht, ist eine Vorkommastelle. In diesem Fall ist das die 12.

Alles, was hinter dem Komma steht, zählt als Nachkommastelle.

Dezimalzahlen rechnen Aufbau von Dezimalzahlen StudySmarter

Die Nachkommastellen können nochmal unterteilt werden. Am besten lässt sich das anhand der Stellenwerttafel zeigen:

Zehner
Einer
Komma
Zehntel
Hundertstel
1
2
,
8
4

Die erste Nachkommastelle ist in diesem Fall die 8 und die zweite Nachkommastelle die 4.

Eine Dezimalzahl stellt keine natürliche Zahl dar. Eine Dezimalzahl wird eigentlich als Dezimalbruch bezeichnet, da sie eigentlich ein Bruch ist, nur in anderer Schreibweise. In der Dezimalschreibweise wird der Bruch als Kommazahl notiert.

Mit Dezimalzahlen rechnen

Jeder Bruch lässt sich also mit der Dezimalschreibweise darstellen.

Folgende Brüche sind gegeben:

12 ; 34 ; 78 ; 35100

In der Dezimalschreibweise sehen sie wie folgt aus:

12=0,5 34=0,75 78=0,87535100=0,35

Wie du sehen kannst, sind aus den Brüchen Kommazahlen geworden, die mit einem Komma getrennt sind.

Aufbau

Eine Dezimalzahl (mathematisch korrekt: ein Dezimalbruch) ist demnach aufgebaut aus Stellen vor dem Komma und den sogenannten Nachkommastellen oder Dezimalen nach dem Komma. Die Nachkommastellen können ebenfalls in der Stellenwerttafel dargestellt werden.

Gegeben ist folgender Bruch:

32125=12,84

Alles, was vor dem Komma steht, ist eine Vorkommastelle. In diesem Fall ist das die 12.

Alles, was hinter dem Komma steht, zählt als Nachkommastelle.

Die Nachkommastellen können nochmal unterteilt werden. Am besten lässt sich das anhand der Stellenwerttafel zeigen:

Zehner
Einer
Komma
Zehntel
Hundertstel
1
2
,
8
4

Die erste Nachkommastelle ist in diesem Fall die 8 und die zweite Nachkommastelle die 4.

Es lässt sich also jeder Bruch in eine Dezimalzahl umwandeln. Je nachdem, um welchen Bruch es sich handelt, entstehen daraus verschiedene Arten von Dezimalzahlen.

Mit Dezimalzahlen rechnen – Arten

Unterschieden werden die Dezimalzahlen in zwei große Kategorien:

  • Endliche bzw. abbrechende Dezimalbrüche

  • Unendliche bzw. nicht-abbrechende Dezimalbrüche

Hier findest du einen guten Überblick über die verschiedenen Arten von Dezimalzahlen:

Dezimalzahlen rechnen Unterteilung Dezimalbrüche Grundlagen StudySmarterAbbildung 1: Arten von Dezimalbrüchen

Lies dir gerne den separaten Artikel zu Dezimalzahlen durch, um mehr darüber zu erfahren.

Dezimalzahlen rechnen – Anwendung

Normalerweise findest du im Alltag hauptsächlich endliche Dezimalzahlen. Ein gängiges Beispiel dafür wäre das Rechnen mit Geld.

Im Supermarkt sind selten Produkte zu finden, die genau einen oder zwei Euro kosten. Sie kosten beispielsweise 0,99 oder 0,39 .

Dezimalzahlen rechnen Beispiel Preise Grundlagen StudySmarterAbbildung 2: Preise im Supermarkt

Im Folgenden lernst du, wie man mit abbrechenden, also endlichen Dezimalzahlen rechnet.

Mit Dezimalzahlen rechnen – Addition, Subtraktion, Multiplikation & Division

Wenn du mit verschiedenen Zahlen rechnest, benötigst du auch noch eine Angabe darüber, was du mit diesen Zahlen machen sollen. Du kannst sie beispielweise zusammenzählen oder abziehen, aber auch noch weitere Grundrechenarten nutzen.

Kurz zur Wiederholung: Als Grundrechenarten gelten:

  • Addieren
  • Subtrahieren
  • Multiplizieren
  • Dividieren

Falls du zu den Grundrechenarten noch Schwierigkeiten hast, kannst du dich gerne in den jeweiligen Artikeln auf StudySmarter durchlesen.

Dezimalzahlen rechnen Grundlagen StudySmarter

Bevor du das Rechnen mit Dezimalbrüchen lernst, findest du im Folgenden eine Einführung in das Runden.

Dezimalzahlen rechnen – Das Runden

Wenn du mit Dezimalzahlen im Kopf rechnen musst, kann dir das Runden behilflich sein.

Beim Runden geht es darum, dass du eine Zahl auf eine Zahl auf- oder abrundest, mit der du leichter rechnen kannst.

Du kannst eine Zahl entweder aufrunden oder abrunden. Bei den Zahlen 0-4 wird abgerundet, bei den Zahlen 5-9wird aufgerundet.

Man kann eine Zahl auf verschiedene Nachkommastellen wie Zehner, Hunderter, Tausender etc. runden. Am einfachsten lässt sich das wieder anhand der Stellenwerttafel zeigen.

Gegeben sind die folgenden Zahlen:

89,24 und 42,98

Diese lassen sich ebenfalls in die Stellenwerttafel eintragen:

Zehner
Einer
Komma
Zehntel
Hundertstel
8
9
,24
4
2
,
9
8

Beide Dezimalzahlen sollen auf Zehntel gerundet werden. Bei der ersten Dezimalzahl wird abgerundet, bei der zweiten aufgerundet. Du erhältst demnach:

89,2489,2042,9843,00

Du möchtest noch mehr zum Thema Runden erfahren? Dann lies gerne den entsprechenden Artikel auf StudySmarter.

Dezimalzahlen addieren

Im Prinzip besteht beim Addieren von Dezimalzahlen kaum ein Unterschied zum Addieren mit ganzen Zahlen. Möglich ist die Addition sowohl im Kopf bei einfachen Zahlen als auch schriftlich.

Meist sind Dezimalzahlen schlecht im Kopf zusammenzurechnen, weshalb hier hauptsächlich die schriftliche Addition gezeigt wird.

Mehr Informationen und Übungsbeispiele dazu findest du im entsprechenden Kapitel.

Beim schriftlichen Addieren kannst du zunähst so rechnen wie mit natürlichen Zahlen. Schreibe jedoch immer die jeweiligen Kommata untereinander und ziehe es dir am Ende runter.

Du möchtest dir eine Flasche Wasser im Supermarkt für 0,49 kaufen.Dazu kommt noch das Pfand von0,08 .

1. Schritt: Schreibe dir die Dezimalzahlen untereinander auf:

Dezimalzahlen rechnen addieren Beispiel StudySmarter

2. Schritt: Nun rechne weiter, so wie du es schon aus der schriftlichen Addition kennst.

Zunächst musst du 9+8 rechnen, was 17 ergibt. Das heißt, du schreibst die 7 unter den Strich und die 1 schreibst du klein im nächsten Schritt oberhalb der Linie auf. Das ist der sogenannte Übertrag:

Dezimalzahlen rechnen addieren Beispiel StudySmarter

Beim nächsten Schritt musst du 4+0 rechnen. Das ergibt 4. Allerdings musst du noch die kleine 1 (den Übertrag) aus dem vorherigen Schritt mit einberechnen. Das Ergebnis lautet dann:

Dezimalzahlen rechnen addieren Beispiel StudySmarter

Zuletzt berechnest du noch die Summe von 0+0:

Dezimalzahlen rechnen addieren Beispiel StudySmarter

Im letzten Schritt verändert sich das Komma.

Dieses musst du nun vor die 5 setzen, das heißt, du ziehst es dir runter. Das Ganze sieht dann so aus:

Dezimalzahlen rechnen addieren Beispiel StudySmarter

Du weißt nun, dass du 0,57 für deinen Einkauf benötigst.

Dezimalzahlen subtrahieren

Das Subtrahieren funktioniert ähnlich wie das Addieren. Auch hier kannst du so schriftlich subtrahieren, wie du es auch mit natürlichen Zahlen machen würdest.

Mit der folgenden Übungsaufgabe kannst du dein Wissen nun prüfen:

Aufgabe

Du kaufst beim Supermarkt für 4,26 ein.

Da du aber noch einen Pfandbon über 1,25 hast, muss das noch vom Preis abgezogen werden.

Kannst du berechnen, wie viel du an der Kasse bezahlen musst?

Lösung

Schreibe dir die Dezimalzahlen wieder untereinander auf. Achte vor allem darauf, dass die Kommata untereinander stehen.

Dann schaust du dir schonmal die hinterste Zahl an und rechnest 6-5. Das Ergebnis wäre 1, daher schreibst du eine 1 unter den Strich.

Das sollte bei dir so aussehen:

Dezimalzahlen rechnen subtrahieren Beispiel StudySmarter

Im nächsten Schritt berechnest du 2-2. Da das Ergebnis 0 ist, kannst du eine 0 unter den Strich schreiben und dann mit der nächsten Zahl weitermachen:

Dezimalzahlen rechnen subtrahieren Beispiel StudySmarter

Im letzten Schritt ziehst du dann wieder das Komma runter und berechnest die nächste Aufgabe.Da 4-1=3 ist, kannst du es wieder unter den Strich schreiben und bekommst dann dein Ergebnis:

Dezimalzahlen rechnen subtrahieren Beispiel StudySmarter

Aufpassen musst du bei der Berechnung mit Zahlen, bei denen ein Übertrag nötig ist. Dabei gibt es verschiedene Verfahren zur Subtraktion:

  • Entbündeln
  • Auffüllen
  • Erweitern

Mehr zu diesen Verfahren findest du im separaten Kapitel zur Subtraktion von Dezimalzahlen.

Dezimalzahlen multiplizieren

Nachdem du nun schon gelernt hast, wie man Dezimalzahlen addiert und subtrahiert, lernst du hier das Vorgehen beim Multiplizieren.

Einfache Zahlen lassen sich noch leicht im Kopf multiplizieren. Bei Dezimalzahlen wird das meist zu kompliziert, weshalb dort meist die schriftliche Multiplikation genutzt wird.

Für das Multiplizieren von Dezimalzahlen wird das Komma beim Rechnen zunächst nicht betrachtet.

Auch muss man unterscheiden, ob man eine Dezimalzahl mit einer natürlichen Zahl multipliziert oder mit einer anderen Dezimalzahl. Das grundsätzliche Verfahren bleibt dasselbe, sie unterscheiden sich nur etwas.

Multiplikation einer Dezimalzahl mit einer natürlichen Zahl

Folgende Berechnung soll durchgeführt werden:

12·4,1

Zunächst schreibst du die Aufgabe auf und ziehst einen Strich darunter. Zur Veranschaulichung sind die Zahlen farbig markiert.

Du beginnst damit, die 4 zuerst mal 1 und dann mal 2 zu nehmen. Das schreibst du dann unter den Strich.

Das Ergebnis ist: 4·1=4 und 4·2=8.

Dezimalzahlen rechnen / multiplizieren / Beispiel / StudySmarter

Im zweiten Schritt wendest du das gleiche Verfahren noch einmal für die 1 hinter dem Komma an.

Also rechnest du zuerst 1·1 und dann 1·2. Die Ergebnisse 1 und 2 schreibst du dann unter das andere:

Dezimalzahlen rechnen / multiplizieren / Beispiel / StudySmarter

Als letzten Schritt musst du dann die beiden Ergebnisse miteinander addieren. Dann ziehst du noch das Komma von oben runter, und schon hast du das Ergebnis:

Dezimalzahlen rechnen / multiplizieren / Beispiel / StudySmarter

Multiplikation von zwei Dezimalzahlen

Das Verfahren bleibt ähnlich. Jedoch werden alle Kommas zunächst ignoriert. Du schreibst sie bei Berechnung daher vorerst nicht auf und führst die schriftliche Multiplikation durch.

Folgende Dezimalzahlen sollen miteinander multipliziert werden:

1,5·15,1

Zur Veranschaulichung sind die Zahlen in verschiedenen Farben markiert. Alle Kommata werden erstmal ignoriert.

Du beginnst mit der hellgrünen Zahl und rechnest erst 1·5 und dann 1·1.Die Ergebnisse schreibst du unter den Strich:

Dezimalzahlen rechnen / mutliplizieren / Beispiel / StudySmarter

Im nächsten Schritt wendest du das gleiche Verfahren für die orange Zahl an. Dafür rechnest du zunächst 5·5. Das Ergebnis ist 25.

Du schreibst eine 5 in das Ergebnis und merkst dir den Übertrag von 2.

Dann rechnest du5·1. Das Ergebnis ist 5. Zusammen mit dem Übertrag ergibt das dann 7. Das schreibst du dann ins Ergebnis rein:

5·1+2=7

Dezimalzahlen rechnen / multiplizieren / Beispiel / StudySmarter

Im nächsten Schritt wendest du das Verfahren noch einmal mit der letzten Zahl an.Dafür rechnest du1·5 und1·1:

Dezimalzahlen rechnen / multiplizieren / Beispiel / StudySmarter

Im letzten Schritt addierst du wieder jede Spalte der Ergebnisse miteinander:

Dezimalzahlen rechnen / multiplizieren / Beispiel / StudySmarter

Dein Ergebnis enthält noch kein Komma. Dazu musst du noch die richtige Stelle ermitteln. Du zählst die Anzahl der Nachkommastellen für jede Dezimalzahl zusammen:

1,5 1 Nachkommastelle15,1 1 Nachkommastelle1+1=2

Das Ergebnis muss demnach 2 Nachkommastellen aufweisen. Entsprechend setzt du das Komma vor die Zahl 6:

Dezimalzahlen rechnen / multiplizieren / Beispiel / StudySmarter

Es gibt auch die Möglichkeit, Dezimalzahlen über das Multiplizieren von Brüchen zu lösen. Sieh dir dazu gerne unsere Vertiefung an.

Da sich jeder Bruch als Dezimalzahl darstellen lässt, kannst du bei endlichen Dezimalzahlen diese auch zurück in einen Bruch wandeln und dann berechnen.

Dafür verwendest du dasselbe Beispiel wie gerade eben bei der Multiplikation zweier Dezimalzahlen:

Berechnet werden soll das Produkt aus 1,5 und 15,1. Du wandelst diese Zahlen zunächst zurück in einen Bruch:

1,5=32 und 15,1=15110

Somit erhältst du das Produkt aus:

32·15110

Die Multiplikation der Brüche lässt sich durchführen, indem der Nenner mit dem Nenner multipliziert wird und der Zähler mit dem Zähler:

32·15110=3·1512·10=45320

Dieser Bruch lässt sich dann auch wieder in einen Dezimalbruch umwandeln und du erhältst:

45320=22,65

Wie du sehen kannst, erhältst du auch durch die Multiplikation über Brüche das gleiche Ergebnis.

Dezimalzahlen dividieren

Wenn man mit Dezimalzahlen dividiert, muss man auch hier wieder zwischen einer Division zweier Dezimalzahlen und die einer Dezimalzahl mit einer natürlichen Zahl unterscheiden. Grundsätzlich bleibt die Vorgehensweise gleich.

Division einer Dezimalzahl mit einer natürlichen Zahl

Bei einer Division von einer Dezimalzahl mit einer natürlichen Zahl ignorierst du zunächst das Komma und ziehst es danach wieder runter.

Folgende Aufgabe soll gelöst werden:

25,8 : 6

Da du das Komma ignorierst, schreibst du zunächst 258 geteilt durch 6 auf:

Dezimalzahlen rechnen / dividieren / Beispiel / StudySmarter

Dann rechnest du so, als würdest wie gewohnt schriftlich dividieren wollen. Das heißt, du schaust im ersten Schritt an, wie oft die 6 in die 25 reinpasst.

Die 6 passt viermal in die 25 rein und deshalb schreibst du die 4 in das Ergebnis und dann eine 24 unter den Strich:

Dezimalzahlen rechnen / dividieren / Beispiel / StudySmarter

Da der Rest 1 ist, schreibst du die 1 unter den nächsten Strich. Dann ziehst du dir die 8 herunter.

Da die 6 genau dreimal in die 18 passt, schreibst du die 3 in das Ergebnis und als Rest unter den Strich die 0:

Dezimalzahlen rechnen / dividieren / Beispiel / StudySmarter

Im letzten Schritt fügst du das Komma wieder hinzu und schreibst es in das Ergebnis. Dazu zählst du wieder die Anzahl der Nachkommastellen der einzelnen Dezimalzahlen ab. Hier hat lediglich eine Kommazahl eine Nachkommastelle. Du setzt das Komma daher vor die 3:

Dezimalzahlen rechnen / dividieren / Beispiel / StudySmarter

Division zweier Dezimalzahlen

Folgende Aufgabe soll berechnet werden:

2,55 : 0,5

Zunächst kannst du das Komma in beiden Zahlen um eine Stelle nach rechts verschieben, um durch eine ganze Zahl teilen zu können. Das Ergebnis verändert sich dadurch nicht:

25,5 : 5

Auch hier ignorierst du zunächst das Komma und rechnest nach dem normalen Verfahren der schriftlichen Division. Das heißt, du rechnest so, als würde dort 255 : 5stehen.

Du beginnst damit, zunächst 25 : 5zu rechnen, da 2 : 5nicht möglich ist. Du schreibst eine 5 in das Ergebnis und schreibst die 25 unter den Bruchstrich. Der Rest ist 0:

Dezimalzahlen rechnen / dividieren / Beispiel / StudySmarter

Im nächsten Schritt ziehst du die 5 herunter und dividierst das mit 5. Das Ergebnis ist 1 und wird in das Ergebnis geschrieben. Der Rest ist wieder 0:

Dezimalzahlen rechnen / dividieren / Beispiel / StudySmarter

Zum Schluss musst du noch das Komma setzen. Bei

25,5 : 5

enthält der Dividend (also 25,5) eine Nachkommastelle. Der Divisior (5) nicht. Daher kannst du das Komma zwischen die 5 und die 1 setzen und erhältst als Ergebnis 5,1.

Mehr Informationen und Übungsaufgaben zur Division von Dezimalzahlen findest du im entsprechenden Kapitel.

Wie bei der Multiplikation von Dezimalzahlen, gibt es auch teilweise die Möglichkeit, diese Kommazahlen wieder in Brüche umzuwandeln und damit weiterzurechnen.

Wenn du Dezimalzahlen dividierst, gibt es verschiedene Methoden, die du dafür anwenden kannst. Zum Beispiel kannst du auch im Kopf dividieren oder über einen Bruch multiplizieren.

Du möchtest folgende Dezimalzahlen dividieren:

13,1 : 2,5

Zunächst wandelst du diese beiden Zahlen wieder zurück in zwei Brüche. Du erhältst demnach:

13,1=13110 und 2,5=2510=52

Jetzt kannst du die Division über die Brüche weiterführen:

13110 : 52

Erinnerst du dich noch, wie sich Brüche dividieren lassen? Jetzt kannst du sie einfach über den Kehrwert multiplizieren:

13110·25

Dann multiplizierst du einfach beide Brüche miteinander und erhältst dein Ergebnis:

13110·25=26250=13125=5,24

Du kannst dir das gerne auch genauer in unserem Artikel Dezimalzahlen ansehen!

Mit periodischen Dezimalzahlen rechnen

Um mit unendlichen, also nicht-abbrechenden, Zahlen zu rechnen, muss man ein paar Dinge beachten. Da sie nicht nach einer bestimmten Nachkommastelle aufhören, gibt es verschiedene Möglichkeiten zur Berechnung:

  • Zahlen verrechnen mit vielen Nachkommastellen
  • Zahlen verrechnen mit Brüchen (geht nicht für irrationale Zahlen)

Folgende periodische Dezimalzahlen sollen miteinander addiert werden:

1,16 + 1,3

Zunächst schreibst du dir die beiden Zahlen untereinander auf, so wie du es schon vom schriftlichen Addieren kennst. Dabei solltest du versuchen, viele Nachkommastellen aufzuschreiben.

Dann rechnest du das Ergebnis aus und schaust, wie sich eine neue periodische Zahl bildet:

Dezimalzahlen rechnen / Beispiel / StudySmarter

Die Zahlen 4 und 9 könnten sich hier endlos weiter wiederholen. Daher kannst du sie zusammenfassen zu:

2,49¯

Eine genauere Berechnung von periodischen Dezimalzahlen führt über den Bruch.

Man kann periodische Dezimalzahlen auch in einen Bruch umwandeln und damit rechnen. Dafür musst du erst die Stellen der Periode zählen und dann in den Nenner des Bruches genau so viele Neunen übertragen. In den Zähler kommt die Periode selbst.

Ein Beispiel für einen Bruch der periodischen Dezimalzahl 1,3 wäre dann:

1+39

Die Stellen vor dem Komma sind ganze Zahlen und müssen bei der Umrechnung nicht beachtet werden. Da die periodische Dezimalzahl nur eine Stelle als Periode hat, muss bei dem Bruch in den Nenner nur eine 9.Das eine Ganze muss dann dementsprechend erweitert werden, um den periodischen Anteil einzurechnen:1,3=99+39=129

Mit Dezimalzahlen rechnen – Übungen

Aufgabe

Du und deine 3 Freunde planen eine Halloween-Party und ihr müsst noch mal einkaufen gehen für den Abend.

Hierfür geht ihr zusammen in den Supermarkt.

Ihr braucht: 2 Tüten Chips, 3 Packungen Gummibärchen und 1 Flasche Cola.

Dezimalzahlen rechnen / Beispiel / StudySmarterAbbildung 3: Preise des Einkaufs

  1. Berechne den Betrag, den ihr bezahlen müsst.
  2. Zudem habt ihr noch einen Rabattcode, der euch einen Preisnachlass gewährt.Berechne nun den neuen Betrag, den ihr bezahlen müsst.
  3. Anschließend möchtet ihr euch die Rechnung aufteilen. Wie viel muss jeder von euch zahlen?

Lösung

1) Du beginnst, indem du die verschiedenen Preise für die jeweiligen Produkte berechnest. Da ihr nur eine Flasche Cola habt, kannst du dafür einfach den Preis aus der Preisliste nehmen:

Cola: 1·0,99 =0,99

Chips: 2·0,79 = 1,58

Gummibärchen: 3·1,09 =3,27

Nun musst du alle Beiträge zusammen addieren: ⁣0,99 +1,58 +3,27 = 5,84 .

2) Du ziehst den Rabattcode nun von dem Betrag ab: 5,84 -0,44 = 5,40 .

3) Da ihr zu viert seid, müsst ihr den übrigen Betrag durch 4 teilen: ⁣5,40 : 4= 1,35 .

Jeder von euch muss also 1,35 bezahlen.

Dezimalzahlen rechnen - Das Wichtigste

  • Eine Dezimalzahl ist ein Bruch in Dezimalschreibweise und wird daher Dezimalbruch genannt.
  • Sie besteht aus Stellen vor dem Komma und den Nachkommastellen (Dezimalen).
  • Es kann zwischen abbrechenden und nicht-abbrechenden Dezimalzahlen unterschieden werden.
  • Dezimalzahlen können mit den verschiedenen Grundrechenarten verrechnet werden:
  • Das Runden ermöglicht es, mit leichteren Zahlen zu rechnen bzw. das Ergebnis zu überschlagen.
  • Dezimalzahlen können sowohl in Dezimalschreibweise als auch in Form eines Bruchs verrechnet werden.

Häufig gestellte Fragen zum Thema Dezimahlzahlen rechnen

Werden Dezimalzahlen in der Dezimalschreibweise (Kommazahl) verrechnet, so ist dies mit der schriftlichen Division möglich. Als Alternative können Dezimalzahlen auch wieder in einen Bruch umgewandelt und damit dividiert werden.

Wenn man mit Dezimalzahlen in Dezimalschreibweise rechnet, ignoriert man das Komma zunächst und zieht es nach der schriftlichen Rechnung wieder herunter. Das Verfahren unterscheidet sich aber immer von der jeweiligen Grundrechenart.

Alternativ können Dezimalzahlen in Brüche umgewandelt und damit weitergerechnet werden.

Wenn man mit periodischen Dezimalzahlen rechnet, dann schreibt man sich zunächst beide Periodenzahlen mit vielen Nachkommastellen auf und sucht dann den Anfang der neuen Periode im Ergebnis. Möglich ist es auch die periodischen Zahlen als Brüche zu verrechnen.

Brüche können in der Dezimalschreibweise als Kommazahl dargestellt werden. Ebenso ist es möglich eine Kommazahl wieder in einen Bruch umzuwandeln. Je nachdem, ob ein endlicher oder periodischer Dezimalbruch vorliegt, unterscheidet sich die Vorgehensweise.

Finales Dezimahlzahlen rechnen Quiz

Dezimahlzahlen rechnen Quiz - Teste dein Wissen

Frage

Wie lässt sich das Multiplizieren von Dezimalzahlen vereinfachen?

Antwort anzeigen

Antwort

​Das Multiplizieren von Dezimalzahlen lässt sich vereinfachen, in dem man das Komma bei der Rechnung weglässt und erst im Ergebnis setzt. 

Frage anzeigen

Frage

Welches mathematische Gesetz erlaubt es dir drei Dezimalzahlen miteinander zu multiplizieren ? 

Antwort anzeigen

Antwort

​Das Assoziativgesetz. 

Frage anzeigen

Frage

Was ist eine Nachkommastelle?

Antwort anzeigen

Antwort

Eine Nachkommastelle ist die Stelle rechts vom Komma. 

Frage anzeigen

Frage

Was ist eine Vorkommastelle?

Antwort anzeigen

Antwort

​Eine Vorkommastelle ist die Stelle links vom Komma. 

Frage anzeigen

Frage

Wie multipliziert man einen Bruch mit einer Dezimalzahl?

Antwort anzeigen

Antwort

Man multipliziert einen Bruch mit einer Dezimalzahl, in dem man den Bruch zuerst in eine Dezimalzahl umwandelt und dann mit der Dezimalzahl multipliziert.

Frage anzeigen

Frage

Wie multipliziert man zwei Brüche miteinander ? 

Antwort anzeigen

Antwort

Man multipliziert zwei Brüche miteinander, in dem man den Zähler mit dem Zähler multipliziert und den Nenner mit dem Nenner. 

Frage anzeigen

Frage

Wo wird das Teilergebnis bei der schriftlichen Multiplikation gesetzt? 

Antwort anzeigen

Antwort

Das Teilergebnis wird bei der schriftlichen Multiplikation unter den dazu gehörigen Teilfaktor gesetzt. 

Frage anzeigen

Frage

Wie berechnet sich das Teilergebnis bei der schriftlichen Multiplikation? 

Antwort anzeigen

Antwort

Das Teilergebnis berechnet sich bei der schriftlichen Multiplikation, in dem ein ganzer Faktor mit einem Teilfaktor multipliziert wird. 

Frage anzeigen

Frage

Was versteht man unter einem Teilfaktor bei der schriftlichen Multiplikation? 

Antwort anzeigen

Antwort

Unter einem Teilfaktor versteht man bei der schriftlichen Multiplikation eine Ziffer eines Faktors. 

Frage anzeigen

Frage

Wann verwendet man natürliche Zahlen?

Antwort anzeigen

Antwort

Natürliche Zahlen verwendet man beim Zählen. 

Frage anzeigen

Frage

Wie viele Nachkommastellen hat das Produkt, wenn man zwei Dezimalzahlen miteinander multipliziert? 

Antwort anzeigen

Antwort

Das Produkt hat genauso viele Nachkommastellen wie beide Dezimalzahlen zusammen. 

Frage anzeigen

Frage

Wie viele Nachkommastellen hat das Ergebnis, wenn man eine natürliche Zahl mit einer Dezimalzahl multipliziert? 

Antwort anzeigen

Antwort

Das Ergebnis hat so viele Nachkommastellen wie die Dezimalzahl. 

Frage anzeigen

Frage

Wie wandelt man eine Dezimalzahl in einen Bruch um ? 

Antwort anzeigen

Antwort

Um eine Dezimalzahl in einen Bruch umzuwandeln, setzt man die Zahl ohne das Komma in den Zähler und wählt für den Nenner eine Zehnerpotenz, die genauso viele Nullen hat wie die Dezimalzahl Nachkommastellen. 

Frage anzeigen

Frage

Wie wandelt man einen Bruch in eine Dezimalzahl um ?

Antwort anzeigen

Antwort

Um einen Bruch in eine Dezimalzahl umzuwandeln dividierst du den Zähler durch den Nenner. 

Frage anzeigen

Frage

Was ist eine Nachkommastelle?



Antwort anzeigen

Antwort

Eine Nachkommastelle ist die Stelle rechts vom Komma. 


Frage anzeigen

Frage

Was ist eine Vorkommastelle?

Antwort anzeigen

Antwort

Eine Vorkommastelle ist die Stelle links vom Komma. 

Frage anzeigen

Frage

Wie wandelt man einen Bruch in eine Dezimalzahl um?


Antwort anzeigen

Antwort

Indem der Zähler durch den Nenner dividiert wird.

Frage anzeigen

Frage

Wie wandelt man eine Dezimalzahl in einen Bruch um?

Antwort anzeigen

Antwort

Um eine Dezimalzahl in einen Bruch umzuwandeln, setzt man die Zahl ohne das Komma in den Zähler und wählt für den Nenner eine Zehnerpotenz, die genauso viele Nullen hat wie die Dezimalzahl Nachkommastellen. 

Frage anzeigen

Frage

Was versteht man unter einer Dezimalzahl?

Antwort anzeigen

Antwort

Unter einer Dezimalzahl wird eine Kommazahl verstanden, welche aus Vorkommastellen, einem Komma und beliebig vielen Nachkommastellen besteht. Ist die Nachkommastelle nicht null, dann befindet sich diese Zahl zwischen zwei ganzen Zahlen. 

Frage anzeigen

Frage

Was ist die Stellenwerttafel?

Antwort anzeigen

Antwort

Mithilfe der Stellenwerttafel können Brüche, wessen Nenner das Ergebnis der 10er-Potenz darstellen, als Dezimalzahl geschrieben werden, indem lediglich die entsprechende Stelle der Zahl in das entsprechende Feld eingetragen werden.

Frage anzeigen

Frage

Wie berechnet man eine Dezimalzahl aus einem prozentuellen Anteil?

Antwort anzeigen

Antwort

Dividiere das Ganze durch 100 und multipliziere das Ergebnis im Anschluss mit dem prozentuellen Anteil.

Frage anzeigen

Frage

Eine Dezimalzahl mit unendlich vielen Nachkommastellen nennt man auch:

Antwort anzeigen

Antwort

Abbrechende Dezimalzahl

Frage anzeigen

Frage

Was versteht man unter dem Runden einer Zahl?

Antwort anzeigen

Antwort

Unter dem Begriff Runden versteht man, dass anstatt des konkreten Wertes einer Zahl mitsamt allen Kommastellen, ein ungefährer Wert angegeben wird, um den Sachverhalt zu vereinfachen.


Frage anzeigen

Frage

Runde die Zahl 61,37 auf die Einerstelle!

Antwort anzeigen

Antwort

61

Frage anzeigen

Frage

Runde die Zahl 4,379 auf die Zehntel Stelle!

Antwort anzeigen

Antwort

4,4
(Die Zahl hinter dem Komma wird auch als Zehntel Stelle bezeichnet)

Frage anzeigen

Frage

Runde die Zahl 13,90 auf die Zehner Stelle!

Antwort anzeigen

Antwort

10

Frage anzeigen

Frage

Welche Stelle der Zahl 14,98 stellt die Zehntel Stelle dar?

Antwort anzeigen

Antwort

1

Frage anzeigen

Frage

Runde die Zahl 109,87 auf die Einer Stelle!

Antwort anzeigen

Antwort

110

(Die Einerstelle nennt man die Stelle vor dem Komma, da diese bereits eine 9 darstellt wird diese um 1 erweitert, was zu 10 führt)

Frage anzeigen

Frage

Was ist eine Nachkommastelle?


Antwort anzeigen

Antwort

Eine Nachkommastelle ist die Stelle rechts vom Komma. 


Frage anzeigen

Frage

Was ist eine Vorkommastelle?

Antwort anzeigen

Antwort

Eine Vorkommastelle ist die Stelle links vom Komma. 



Frage anzeigen

Frage

Wie wandelt man eine Dezimalzahl in einen Bruch um?

Antwort anzeigen

Antwort

Um eine Dezimalzahl in einen Bruch umzuwandeln, setzt man die Zahl ohne das Komma in den Zähler und wählt für den Nenner eine Zehnerpotenz, die genauso viele Nullen hat wie die Dezimalzahl Nachkommastellen. 


Frage anzeigen

Frage

Was versteht man unter einer Dezimalzahl?

Antwort anzeigen

Antwort

Unter einer Dezimalzahl wird eine Kommazahl verstanden, welche aus Vorkommastellen, einem Komma und beliebig vielen Nachkommastellen besteht. Ist die Nachkommastelle nicht null, dann befindet sich diese Zahl zwischen zwei ganzen Zahlen. 

Frage anzeigen

Frage

Was ist die Stellenwerttafel?

Antwort anzeigen

Antwort

Mithilfe der Stellenwerttafel können Brüche, wessen Nenner das Ergebnis der 10er-Potenz darstellen, als Dezimalzahl geschrieben werden, indem lediglich die entsprechende Stelle der Zahl in das entsprechende Feld eingetragen werden.


Frage anzeigen

Frage

Eine Dezimalzahl mit unendlich vielen Nachkommastellen nennt man auch:


Antwort anzeigen

Antwort

Abbrechende Dezimalzahl

Frage anzeigen

Frage

Welche Stelle der Zahl 14,98 stellt die Zehntel Stelle dar?



Antwort anzeigen

Antwort

8

Frage anzeigen

Frage

Was ist eine Dezimalzahl?

Antwort anzeigen

Antwort

Eine Dezimalzahl stellt eine nicht-ganze und keine natürliche Zahl dar und wird auch als Dezimalbruch bezeichnet.

Frage anzeigen

Frage

Welche Arten von Dezimalzahlen gibt es?

Antwort anzeigen

Antwort

periodische Dezimalzahlen

Frage anzeigen

Frage

Nenne die Regel, mit welcher eine Dezimalzahl mit einer Zehnerpotenz multipliziert wird.

Antwort anzeigen

Antwort

Eine Dezimalzahl mit m Nachkommastellen, multipliziert mit einer Zehnerpotenz 10n, hat ein Produkt mit m−n Nachkommastellen.

Frage anzeigen

Frage

Wie funktioniert die Multiplikation von Dezimalzahlen durch die Unterteilung von Stellenwerten?

Antwort anzeigen

Antwort

Als Erstes zerlegst Du die Dezimalzahl in ihre Stellenwerte. Diese multiplizierst Du dann einzeln mit der natürlichen Zahl und addierst die Ergebnisse dann wieder.

Frage anzeigen

Frage

Beschreibe Schritt für Schritt das schriftliche Multiplizieren bei Dezimalzahlen.

Antwort anzeigen

Antwort

Bei der schriftlichen Multiplikation befolgst Du folgende Schritte:

  • Nachkommastellen zählen
  • Kommata weglassen
  • schriftliche Multiplikation
  • Komma wieder so einfügen, dass das Produkt m + n Nachkommastellen hat, wenn der erste Faktor m Nachkommastellen und der zweite Faktor n Nachkommastellen hat

Frage anzeigen

Frage

Welche Möglichkeiten hast Du bei der Multiplikation von periodischen Dezimalzahlen?

Antwort anzeigen

Antwort

Dezimalzahlen in Brüche umwandeln

Frage anzeigen

Frage

Bewerte folgende Aussage:


Wenn eine Dezimalzahl mit einem Bruch multipliziert wird, muss die Dezimalzahl in einen Bruch umgewandelt werden.

Antwort anzeigen

Antwort

Die Aussage ist nur teilweise korrekt, da es sich hier nur um eine Möglichkeit handelt. Wenn eine Dezimalzahl mit einem Bruch multipliziert wird, dann muss entweder der Bruch in eine Dezimalzahl oder die Dezimalzahl in einen Bruch umgewandelt werden.

Frage anzeigen

Frage

Bewerte folgende Aussage:


Wenn eine Dezimalzahl mit einem Bruch multipliziert wird, muss die Dezimalzahl in einen Bruch umgewandelt werden.

Antwort anzeigen

Antwort

Die Aussage ist nur teilweise korrekt, da es sich hier nur um eine Möglichkeit handelt. Wenn eine Dezimalzahl mit einem Bruch multipliziert wird, dann muss entweder der Bruch in eine Dezimalzahl oder die Dezimalzahl in einen Bruch umgewandelt werden.

Frage anzeigen

Frage

Welches Gesetz erlaubt es Dezimalzahlen bei der Multiplikation innerhalb einer Rechnung vertauscht zu werden?

Tippe die Antwort ein.

Antwort anzeigen

Antwort

Kommutativgesetz

Frage anzeigen

Mehr zum Thema Dezimahlzahlen rechnen
60%

der Nutzer schaffen das Dezimahlzahlen rechnen Quiz nicht! Kannst du es schaffen?

Quiz starten

Wie möchtest du den Inhalt lernen?

Karteikarten erstellen
Inhalte meiner Freund:innen lernen
Ein Quiz machen

94% der StudySmarter Nutzer erzielen bessere Noten.

Jetzt anmelden

94% der StudySmarter Nutzer erzielen bessere Noten.

Jetzt anmelden

Wie möchtest du den Inhalt lernen?

Karteikarten erstellen
Inhalte meiner Freund:innen lernen
Ein Quiz machen

Kostenloser mathe Spickzettel

Alles was du zu . wissen musst. Perfekt zusammengefasst, sodass du es dir leicht merken kannst!

Jetzt anmelden

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Melde dich an für Notizen & Bearbeitung. 100% for free.

Fang an mit StudySmarter zu lernen, die einzige Lernapp, die du brauchst.

Jetzt kostenlos anmelden
Illustration