Open in App
Login Anmelden

Select your language

Suggested languages for you:
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|
Brüche kürzen

In diesem Artikel erfährst Du, wie man Brüche kürzen kann. Das ist eine Fähigkeit, die man in der Bruchrechnung regelmäßig benötigt. Sicherlich bist Du bei den Aufgaben in der Schule schon mal über den Hinweis „kürze vollständig“ gestolpert. Wie das geht, lernst Du hier.

Inhalt von Fachexperten überprüft
Kostenlose StudySmarter App mit über 20 Millionen Studierenden
Mockup Schule

Entdecke über 50 Millionen kostenlose Lernmaterialien in unserer App.

Brüche kürzen

Illustration

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmelden

Nie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmelden
Illustration

In diesem Artikel erfährst Du, wie man Brüche kürzen kann. Das ist eine Fähigkeit, die man in der Bruchrechnung regelmäßig benötigt. Sicherlich bist Du bei den Aufgaben in der Schule schon mal über den Hinweis „kürze vollständig“ gestolpert. Wie das geht, lernst Du hier.

Brüche erweitern und kürzen

Jeder Bruch kann erweitert werden, indem der Zähler und der Nenner des Bruchs mit derselben Zahl multipliziert werden. Das Kürzen eines Bruchs ist das Gegenteil des Erweiterns. Beim Kürzen wird der Zähler und der Nenner mit derselben Zahl dividiert.

Erweitern: \begin{align}&\cdot 2 \\ \frac{1}{2}\quad &=\quad\frac{1\cdot2 }{2\cdot2}\quad = \quad \frac{2}{4} \end{align}

Kürzen: \begin{align}&: 2 \\ \frac{2}{4}\quad &=\quad\frac{2:2 }{4:2}\quad = \quad \frac{1}{2} \end{align}

Beim Erweitern und Kürzen bleibt der Wert des Bruchs gleich. Den Bruch \(\frac{1}{2}\) kannst Du Dir als die Hälfte eines Ganzen vorstellen zum. Beispiel die Hälfte eines Rechtecks. Durch Erweitern des Bruchs mit \(2\) erhälst Du den Bruch \(\frac{2}{4}\). Wie Du in der Abbildung 1 sehen kannst, bleibt die markiertet Fläche auch nach dem Erweitern gleich.

Brüche kürzen Brüche kürzen Beispiele StudySmarterAbbildung 1: Graphische Darstellung des Kürzens

Brüche kürzen – Trick

Brüche mit einem gemeinsamen Teiler kürzen

Kürzen kannst Du immer dann, wenn sowohl der Nenner als auch der Zähler durch dieselbe Zahl geteilt werden können.

Zum Kürzen von Brüchen ist es hilfreich, dieTeilbarkeitsregeln im Kopf zu haben. Weißt Du noch, wann eine Zahl durch 4 oder durch 9 teilbar ist? Du kannst hierfür unseren Artikel „Teilbarkeitsregeln“ ansehen!

Bei vielen Zahlen kannst Du schnell erkennen, ob sie durch eine andere teilbar sind. Beispielsweise lässt sich jede gerade Zahl durch \(2\) teilen.

Der Bruch \(\frac{36}{72}\) soll vollständig gekürzt werden. Du erkennst vielleicht sofort, dass Du mit 36 kürzen kannst. \begin{align}&: 36 \\ \frac{36}{72}\quad &=\quad\frac{36:36 }{72:36}\quad = \quad \frac{1}{2} \end{align}

Falls nicht, kannst Du aber auch kleinschrittiger vorgehen. \(36\) und \(72\) sind gerade Zahlen und lassen sich damit durch \(2\) teilen. Du kannst also wie folgt in mehreren Schritten rechnen:

\begin{array}{cccc}\,&:2&\,& :2&\,& :2&\,&:3\\ \frac{36}{72} & =&\frac{18 }{36}& = & \frac{9}{18} &= &\frac{3}{6}&=& \frac{1}{2}\end{array}

Brüche kürzen mit dem größten gemeinsamen Teiler (ggT)

Der größte gemeinsame Teiler (ggT) ist eine weitere Möglichkeit, um einen Bruch zu kürzen. Dafür stellst Du jeweils für den Nenner und den Zähler die Teilermengen auf und kürzt den Bruch mit dem größten Wert, der in beiden Mengen gleichzeitig vorkommt.

Angenommen Dein Bruch lautet \(\frac{36}{90}\).Die Teilermengen für den Zähler (36) und den Nenner (90) lauten hier: \begin{align}T_{36}&=\{2; 3; 4; 6; 12; 18; 36\}\\T_{90}&=\{2; 3; 5; 6; 10; 12; 15; 18; 30; 45; 90\}\end{align}

Die größte Zahl, die in beiden Mengen vorkommt, ist \(18\). Also lässt sich der Bruch vollständig mit \(18\) kürzen

\begin{array}{ccc}\,&:18&\\ \frac{36}{90} & =&\frac{2 }{5}\end{array}

Mehr zum ggT kannst Du in der Erklärung „größter gemeinsamer Teiler“ nachlesen.

Brüche kürzen mithilfe von Primfaktorzerlegung

Ein dritter Weg, um Brüche zu kürzen, ist die Verwendung der Primfaktorzerlegung.

Jede natürliche Zahl, die größer als 1 ist, kann man als eindeutiges Produkt aus Primzahlen schreiben. Dieses Produkt wird auch Primfaktorzerlegung der Zahl genannt.

"Eindeutig" ist die Primfaktorzerlegung bis auf Reihenfolge. Das heißt, dass die vorkommenden Primzahlen eindeutig sind, in welcher Reihenfolge sie aber aufgeschrieben sind, ist nicht eindeutig.

Beispiel: Die Primfaktorzerlegung der Zahl 12 ist 12=22·3 oder auch 12=2·3·2. Die Primfaktoren sind dieselben, aber in einer anderen Reihenfolge aufgeschrieben.

Jede Zahl kann also als Produkt mehrerer Primzahlen aufgeschrieben werden, vorausgesetzt sie ist größer als 1 und nicht selbst eine Primzahl.

Um nun einen Bruch mithilfe der Primfaktorzerlegung zu kürzen, zerlegst du zunächst Zähler und Nenner des Bruches jeweils in Primfaktoren. Dann kannst du direkt sehen, welche Faktoren oben und unten gleich vorkommen. Die gleichen Faktoren kannst du dann herausstreichen. Aber Vorsicht, es müssen im Zähler und Nenner des Bruches gleich viele Faktoren weggestrichen werden!

Aufgabe 3

Der Bruch 3260 soll mithilfe der Primfaktorzerlegung vollständig gekürzt werden.

Lösung

Dazu werden Zähler und Nenner zunächst in Primfaktoren zerlegt:

32=2·2·2·2·260=2·2·3·5

Im Zähler kommt lediglich der Faktor 2 vor, dafür aber gleich fünfmal. Im Nenner kommt der Faktor 2 auch vor, zweimal, und je einmal die Faktoren 3 und 5.

Es können jetzt nur Faktoren gekürzt werden, die im Zähler und im Nenner vorkommen, also in diesem Fall nur die 2. Da sie im Zähler und Nenner gleich oft weggestrichen werden müssen, können jeweils nur zwei Zweier gekürzt werden, obwohl im Zähler fünf Zweier wären!

Durch Wegstreichen erhält man also:

3260=2·2·2·2·22·2·3·5=2·2·2·2·22·2·3·5=2·2·23·5=815

Bist du dir nicht mehr ganz sicher, wie die Primfaktorzerlegung funktioniert? Kein Problem. Für mehr Informationen zu diesem Thema kannst du gerne auf StudySmarter im separaten Kapitel nachlesen.

Brüche mit Variablen kürzen – Regel

Brüche mit Variablen nennt man auch Bruchterme.

Einen Term der Form ST, bei dem S und T ebenfalls Terme sind, nennt man Bruchterm. Dabei darf der Term T im Nenner nicht der Nullterm sein.

Wenn du ein Profi im Umgang mit Bruchtermen werden willst, dann schau dir unbedingt den gleichnamigen Artikel dazu an!

Sind in einem Bruch Variablen enthalten, kann man unter Umständen trotzdem kürzen. Hier wird aber eine Regel besonders wichtig, die du dir unbedingt merken solltest:

Regel zum Kürzen von Brüchen:

Aus Differenzen und Summen kürzen nur die Dummen!

Die Regel sagt das Folgende aus: hast du einen Bruch gegeben, bei dem im Zähler und Nenner jeweils Terme (eventuell sogar mit Variablen) vorkommen, dann darfst du nur kürzen, wenn diese Terme Produkte oder Quotienten sind. Sind die Terme Summen oder Differenzen, wird also + oder - gerechnet, so darf man nicht kürzen.

Betrachte den Bruch 2a2+52a2. Falls du dir jetzt denkst "juhu, ich kürze 2a2", dann müssen wir dich leider enttäuschen. Der Zählerterm ist eine Summe, weshalb du hier nicht kürzen darfst. 2a2 ist nämlich kein Teiler des Zählers.

Betrachte dagegen den Bruch 2a2·52a2. Hier darfst du mit 2a2 kürzen, denn das ist ein Teiler des Zählers, weil der Zähler in Produktform vorliegt.

Hast du also einen Bruch mit Variablen und Termen gegeben, musst du immer zuerst überprüfen, ob im Zähler und Nenner Produkte vorliegen.

Manchmal kann man aber auch einen kleinen Trick anwenden: Durch Ausklammern kann man nämlich Summen in Produkte umwandeln!

Fragst du dich gerade, was dieses Ausklammern nochmal war? Kein Problem, schau dir doch den Artikel Ausklammern und Ausmultiplizieren an!

Dazu ein kurzes Beispiel:

Aufgabe 4

Klammere beim folgenden Bruch geschickt aus, um kürzen zu können.

a2+4ab+4b22a+4b

Lösung

Wenn du genau hinschaust, liegt im Zähler eine binomische Formel vor! Im Nenner kann zudem der Faktor 2 ausgeklammert werden:

a2+4ab+4b22a+4b=a+2b22·a+2b

Sowohl im Zähler, als auch im Nenner findet sich jetzt der Faktor a+2b, der also gekürzt werden kann:

a+2b22·a+2b=a+2b·a+2b2·a+2b=a+2b2

Brüche über Kreuz kürzen

Vielleicht hast du schon einmal vom "über Kreuz Kürzen" gehört. Das kann man beim Multiplizieren machen.

In einem Produkt ab·cd kann überkreuz gekürzt werden, wenn die Zahlen a und d und/oder die Zahlen b und c einen gemeinsamen Teiler haben.

Das heißt, man kann überkreuz kürzen, wenn der Zähler des ersten Bruches und der Nenner des zweiten Bruches, oder der Zähler des zweiten Bruches und der Nenner des ersten Bruches einen gemeinsamen Teiler haben.

Das über Kreuz Kürzen hat den Vorteil, dass die Zahlen, mit denen du multiplizieren musst, kleiner werden. Zudem kannst du es selbst dann anwenden, wenn die Brüche einzeln schon vollständig gekürzt sind.

Aufgabe 5

Berechne. Kürze zuerst über Kreuz: 815·2064

Lösung

Die Zahlen 8 und 64 können beide mit der 8 gekürzt werden:

815·2064=8·115·208·8=115·208

Außerdem können die Zahlen 15 und 20 beide mit der 5 gekürzt werden:

115·208=13·5·4·58=13·48

Jetzt kann nicht mehr überkreuz gekürzt werden.

13·48=424

Das Ergebnis kann jedoch noch gekürzt werden.

424=1·46·4=16

Du hättest auch vor dem Multiplizieren den hinteren Bruch noch vollständig kürzen können.

Brüchen kürzen Aufgaben

Hier findest du noch ein paar Übungsaufgaben, damit du dein Verständnis noch verbessern kannst.

Aufgabe 6

Kürze die folgenden Brüche vollständig.

1. 28122. 10013. 1474. 985. 27306. 128256

Lösung

1. 2812=28:412:4=73

2. 1001=100

3. 147=14:77:7=21=2

4. 98 kann nicht weiter gekürzt werden, da die Differenz zwischen Zähler und Nenner 1 ist.

5. 2730=27:330:3=910

6. 128256=128:128256:128=12

Aufgabe 7

Berechne. Wenn es möglich ist, kürze zuerst über Kreuz.

1. 2548·24702. 114·2853. 2230·1261214. 366·1125. 118·396. 4263·35

Lösung

1. 2548·2470=5·52·24·1·245·14=52·114=528

2. 114·285=11·14·2·145=11·25=25

3. 2230·126121=2·1110·3·42·311·11=22·5·2·2111=25·2111=4255

4. 366·112=3·122·3·11·12=12·11=12

5. 118·39=118·1·33·3=118·13=1124

6. 4263·35=2·213·21·1·35=21·15=25

Aufgabe 8

Kürze in den folgenden Bruchtermen so viel wie möglich.

1. 2ab·a2+ab4a2b2+6a2b2. x4-6x2y+9yx2-3y3. 6s3t4-12s2t5+3st3s2t·9st2-3t2

Lösung

1. 2ab·a2+ab4a2b2+6a2b=2ab·a·a+b2a2b·2b+3=a+b2b+3

2. x4-6x2y+9yx2-3y=x2-3y21·x2-3y=x2-3y1=x2-3y

3. 6s3t4-12s2t5+3st3s2t·9st2-3t2=6s3t4-12s2t5+27s3t3s2t·3t2·3s-1=3s2t3·2st-4t2+9s3s2t3·3s-1=2st-4t2+9s3s-1

Brüche kürzen Das Wichtigste

  • Die Umformung des Bruches p·aq·a zu pq wird Kürzen genannt.
  • Das Kürzen von Brüchen ist die Umkehroperation des Erweiterns.
  • Brüche kürzen braucht man, um Multiplikationen und Divisionen mit Brüchen zu vereinfachen, oder um ein Ergebnis in Bruchform anschaulicher darzustellen.
  • Um einen Bruch zu kürzen, muss man Zähler und Nenner durch dieselbe natürliche Zahl teilen.
  • Haben Zähler und Nenner keinen gemeinsamen Teiler mehr, so heißt der Bruch vollständig gekürzt.
  • Brüche kann man mit dem größten gemeinsamen Teiler von Zähler und Nenner, mit einem beliebigen Teiler von Zähler und Nenner oder mithilfe der Primfaktorzerlegung kürzen.
  • Regel zum Kürzen von Brüchen mit Variablen: Aus Differenzen und Summen kürzen nur die Dummen.
  • Beim Multiplizieren von zwei Brüchen kann man über Kreuz kürzen, indem der Zähler des einen Bruchs und der Nenner des anderen Bruchs durch dieselbe natürliche Zahl geteilt werden.

Häufig gestellte Fragen zum Thema Brüche kürzen

Man kann einen Bruch kürzen, wenn der Zähler und der Nenner des Bruches einen gemeinsamen Teiler haben. Ist das nicht der Fall, kann man nicht kürzen.

Nein. Man kann nur Brüche kürzen, bei denen Zähler und Nenner durch die gleiche natürliche Zahl teilbar sind, sie also einen gemeinsamen Teiler haben. Ist das nicht der Fall, kann man den Bruch nicht kürzen.

Du darfst einen Bruch nicht kürzen, wenn der Zähler und der Nenner keinen gemeinsamen Teiler haben, also nicht durch dieselbe Zahl teilbar sind.

Normalerweise multipliziert man Brüche nicht überkreuz, sondern multipliziert jeweils die Zähler und die Nenner miteinander. Wenn man aber einen Bruch durch einen Bruch teilt, dann darf man stattdessen überkreuz multiplizieren. Einfacher ist es aber, vom Bruch, durch den geteilt wird, den Kehrbruch zu bilden, und dann wie gewohnt die beiden Brüche zu multiplizieren.

Finales Brüche kürzen Quiz

Brüche kürzen Quiz - Teste dein Wissen

Frage

Erläutere, wie man einen Bruch kürzt.

Antwort anzeigen

Antwort

Um einen Bruch zu kürzen, werden Zähler und Nenner durch die gleiche natürliche Zahl dividiert.

Frage anzeigen

Frage

Bewerte die folgende Aussage:

Brüche werden beim Kürzen kleiner.

Antwort anzeigen

Antwort

Das ist falsch. Der Wert eines Bruches verändert sich nicht, wenn gekürzt wird.

Frage anzeigen

Frage

Beschreibe, was du tun musst, wenn du einen Bruch mithilfe der Primfaktorzerlegung kürzen möchtest.

Antwort anzeigen

Antwort

  • Zunächst werden Zähler und Nenner in Primfaktoren zerlegt
  • Anschließend kannst du diejenigen Faktoren kürzen, die sowohl im Zähler, als auch im Nenner vorkommen. Dabei darfst du nur so viele Faktoren kürzen, sodass du dieselbe Anzahl im Zähler und im Nenner wegstreichst.
  • Abschließend werden die Produkte wieder berechnet, sodass du einen normalen Bruch hast.

Frage anzeigen

Frage

Nenne die Methoden, die du kennengelernt hast, um Brüche zu kürzen.

Antwort anzeigen

Antwort

  • Brüche mit einem gemeinsamen Teiler kürzen
  • Brüche mit dem größten gemeinsamen Teiler (ggT) kürzen
  • Brüche mithilfe der Primfaktorzerlegung kürzen
  • Brüche mit Variablen durch Ausklammern kürzen
  • Brüche über Kreuz kürzen

Frage anzeigen

Frage

Welchen Vorteil hat es, wenn du Brüche mit dem größten gemeinsamen Teiler (ggT) kürzt anstatt mit irgendeinem gemeinsamen Teiler?

Antwort anzeigen

Antwort

Die Brüche sind dann direkt vollständig gekürzt. Wenn du mit irgendeinem gemeinsamen Teiler kürzt, sind die Brüche nicht vollständig gekürzt.

Frage anzeigen

Frage

Beschreibe, was vollständig gekürzt bedeutet.

Antwort anzeigen

Antwort

Ein Bruch heißt vollständig gekürzt, wenn Zähler und Nenner keinen gemeinsamen Teiler mehr haben, der größer als 1 ist. Der Bruch kann dann also nicht weiter gekürzt werden.

Frage anzeigen

Frage

"Brüche kürzen macht keinen Sinn". 

Nimm Stellung zu dieser Aussage.

Antwort anzeigen

Antwort

Das Rechnen mit gekürzten Brüchen kann einfacher sein als mit ungekürzten Brüchen. Beispielsweise beim multiplizieren oder dividieren von Brüchen.


Möchtest du zwei Brüche addieren oder subtrahieren, brauchst du jedoch den gleichen Nenner. Hierzu musst du sogar manchmal Brüche erweitern, und kürzen kann die Rechnung erschweren.

Frage anzeigen

Frage

Nenne die beiden Fälle, in denen du direkt siehst, dass ein Bruch vollständig gekürzt ist.

Antwort anzeigen

Antwort

  • Wenn im Zähler oder Nenner des Bruches eine 1 steht.
  • Wenn die die Differenz zwischen Zähler und Nenner 1 ist.

Frage anzeigen

Frage

Begründe, warum Brüche nicht gekürzt werden können, bei denen die Differenz zwischen Zähler und Nenner 1 ist.

Antwort anzeigen

Antwort

Zwei aufeinanderfolgende Zahlen haben keinen gemeinsamen Teiler, der größer als 1 ist. Daher haben Brüche, deren Zähler und Nenner zwei aufeinanderfolgende Zahlen sind, keinen gemeinsamen Teiler und können nicht gekürzt werden.

Frage anzeigen

Frage

Welche wichtige Regel gibt es beim Kürzen von Brüchen, die vor allem dann wichtig wird, wenn es sich um einen Bruchterm handelt?

Antwort anzeigen

Antwort

Aus Differenzen und Summen kürzen nur die Dummen!

Frage anzeigen

Frage

Erläutere, wann du in einem Produkt aus zwei Brüchen über Kreuz kürzen kannst.

Antwort anzeigen

Antwort

In einem Produkt aus zwei Brüchen kann über Kreuz gekürzt werden, wenn der Zähler des ersten Bruches und der Nenner des zweiten Bruches, oder der Zähler des zweiten Bruches und der Nenner des ersten Bruches einen gemeinsamen Teiler haben. 

Frage anzeigen

Karteikarten in Brüche kürzen11

Lerne jetzt

Erläutere, wie man einen Bruch kürzt.

Um einen Bruch zu kürzen, werden Zähler und Nenner durch die gleiche natürliche Zahl dividiert.

Bewerte die folgende Aussage:

Brüche werden beim Kürzen kleiner.

Das ist falsch. Der Wert eines Bruches verändert sich nicht, wenn gekürzt wird.

Beschreibe, was du tun musst, wenn du einen Bruch mithilfe der Primfaktorzerlegung kürzen möchtest.

  • Zunächst werden Zähler und Nenner in Primfaktoren zerlegt
  • Anschließend kannst du diejenigen Faktoren kürzen, die sowohl im Zähler, als auch im Nenner vorkommen. Dabei darfst du nur so viele Faktoren kürzen, sodass du dieselbe Anzahl im Zähler und im Nenner wegstreichst.
  • Abschließend werden die Produkte wieder berechnet, sodass du einen normalen Bruch hast.

Nenne die Methoden, die du kennengelernt hast, um Brüche zu kürzen.

  • Brüche mit einem gemeinsamen Teiler kürzen
  • Brüche mit dem größten gemeinsamen Teiler (ggT) kürzen
  • Brüche mithilfe der Primfaktorzerlegung kürzen
  • Brüche mit Variablen durch Ausklammern kürzen
  • Brüche über Kreuz kürzen

Welchen Vorteil hat es, wenn du Brüche mit dem größten gemeinsamen Teiler (ggT) kürzt anstatt mit irgendeinem gemeinsamen Teiler?

Die Brüche sind dann direkt vollständig gekürzt. Wenn du mit irgendeinem gemeinsamen Teiler kürzt, sind die Brüche nicht vollständig gekürzt.

Beschreibe, was vollständig gekürzt bedeutet.

Ein Bruch heißt vollständig gekürzt, wenn Zähler und Nenner keinen gemeinsamen Teiler mehr haben, der größer als 1 ist. Der Bruch kann dann also nicht weiter gekürzt werden.

Mehr zum Thema Brüche kürzen

Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

  • Karteikarten & Quizze
  • KI-Lernassistent
  • Lernplaner
  • Probeklausuren
  • Intelligente Notizen
Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App! Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

Melde dich an für Notizen & Bearbeitung. 100% for free.

Fang an mit StudySmarter zu lernen, die einzige Lernapp, die du brauchst.

Jetzt kostenlos anmelden
Illustration