Select your language

Suggested languages for you:
Log In Anmelden
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Die All-in-one Lernapp:

  • Karteikarten
  • NotizenNotes
  • ErklärungenExplanations
  • Lernpläne
  • Übungen
App nutzen

Bruchgleichungen

Save Speichern
Print Drucken
Edit Bearbeiten
Melde dich an und nutze alle Funktionen. Jetzt anmelden
Bruchgleichungen

Du hast eine Gleichung gegeben, in der sich ein Bruchterm befindet und du weißt nicht, wie du weiter vorgehen sollst? Kein Problem, wir erklären dir, wie du den Bruchterm schnell und einfach auflöst und so an die gewünschte Lösung kommst.

Bruchgleichungen – Definition & Beispiele

Um zu verstehen, was eine Bruchgleichung ist, solltest du zunächst verstanden haben, was ein Bruchterm ist.

Ein Bruchterm ist ein Term, welcher im Nenner mindestens eine Variable enthält.

Terme kennst du sicher bereits und Brüche ebenso. Zusammen werden sie zu Bruchtermen kombiniert, wobei die Unbekannte (wie beispielsweise x) im Nenner des Bruchs steht. Wir sehen uns dazu später Beispiele an.

Vom Bruchterm zur Bruchgleichung fehlt dann nicht mehr viel. Wir müssen lediglich ein Gleichheitszeichen zwischen zwei Terme einfügen. Mindestens einer dieser Terme muss ein Bruchterm sein. Mathematisch lassen sich Bruchgleichungen also wie folgt definieren:

Bruchgleichungen sind Gleichungen, welche mindestens einen Bruchterm enthalten.

Sehen wir uns dazu doch direkt ein Beispiel an.

Ein einfaches Beispiel für einen Bruchterm sieht folgendermaßen aus:

Bruchgleichungen, Beispiele, Lösen, StudySmarter

Im Nenner befindet sich in diesem Fall nur eine Variable, nämlich x.

Eine Bruchgleichung mit dem oben aufgeführten Bruchterm könnte so aussehen:

Bruchgleichungen, Beispiele, Lösen, StudySmarter

Hier wurde lediglich ein Gleichheitszeichen und ein weiterer Term (hier eine Zahl) auf der anderen Seite eingefügt.

Übrigens: Wenn du noch mehr über den Bruchterm wissen möchtest oder noch mehr Beispiele dazu benötigst, kannst du im Artikel Bruchterm nachschauen.

Bruchgleichungen lösen – mit Beispielen

Um Bruchgleichungen erfolgreich lösen zu können, gibt es einige Vorgehensweisen und Regeln, welche du beachten solltest.

Definitionsmenge einer Bruchgleichung

Wichtig ist zunächst, sich die Definitionsmenge einer Bruchgleichung anzusehen.

Die Definitionsmenge ist die Menge der Zahlen, für welche die Gleichung gilt, wenn sie für x eingesetzt werden. In der Regel ist das.

Die reellen Zahlen () sind ein Zahlenbereich, welcher sowohl die rationalen (), als auch die irrationalen Zahlen () umfasst. Die rationalen Zahlen wiederum enthalten die ganzen () und die natürlichen () Zahlen.

Da nicht durch 0 geteilt werden darf, müssen alle Werte, für welche der Nenner 0 werden würde, aus der Definitionsmenge ausgeschlossen werden. Die Gleichung würde sonst ungültig werden.

Für die Notation der Definitionsmenge nutzen wir das Zeichen "\", welches "ohne" bedeutet. Wir schließen so also entsprechende Zahlen aus der Definitionsmenge aus.

Du kannst das direkt anhand eines Beispiels ein mal üben.

Aufgabe 1

Gegeben ist die folgende Gleichung:

Bruchgleichungen, Beispiele Lösen, StudySmarter

Du nimmst dir den Nenner, setzt diesen gleich 0 und löst die so erhaltene Gleichung auf. So können wir einen Wert ermitteln, den wir aus der Definitionsmenge ausschließen müssen, da unser Nenner nicht 0 werden darf.

Bruchgleichungen, Beispiele Lösen, StudySmarter

Die Definitionsmenge dieser Gleichung ist:

Bruchgleichungen, Beispiele Definitionsmenge Lösen, StudySmarter

Ausgesprochen bedeutet das, dass du in dieser Gleichung alle reellen Zahlen außer die 4 für x einsetzen kannst.

Das Bestimmen der Definitionsmenge ist ein erster wichtiger Schritt zur Lösung solcher Bruchgleichungen. Nun kommen wir direkt zum Lösen dieser Gleichungsart.

Bruchgleichungen mit Bruchterm rechnerisch lösen

Bei Bruchgleichungen mit nur einem Bruchterm kannst du für gewöhnlich folgendermaßen vorgehen:

  1. Lege die Definitionsmenge fest.
  2. Multipliziere beide Seiten der Gleichung mit dem Nenner des Bruchs. (Erweitern)
  3. Die so erhaltene Gleichung kannst du mit der dir bekannten Vorgehensweise zum Lösen einer Gleichung auflösen.
  4. Überprüfe, ob deine Lösung in der Definitionsmenge liegt.
  5. Notiere deine Lösungsmenge.

Klingt erst mal kompliziert, oder? Ist es aber nicht. Sehen wir uns dazu zusammen ein Beispiel an.

Aufgabe 2

Folgende Gleichung ist dir gegeben. Bestimme deren Lösungsmenge.

Bruchgleichungen, Beispiele, Lösen, StudySmarter

Lösung

1. Lege zunächst die Definitionsmenge der Bruchgleichung fest.

Bruchgleichungen, Beispiele, Lösen, StudySmarter

Nimm dir dazu den Nenner, setze diesen gleich 0 und löse weiter auf. Wir haben also:

Bruchgleichungen, Beispiele, Lösen, StudySmarter

2. Dann multiplizierst du beide Seiten der Gleichung mit. Du erweiterst demnach beide Seiten der Gleichung mit dem Wert.

Bruchgleichungen, Beispiele, Lösen, StudySmarter

3. Durch die Multiplikation mitlöst sich der Bruch auf und es bleibt nur noch:

Bruchgleichungen, Beispiele, Lösen, StudySmarter

Warum steht auf der linken Seite jetzt keinmehr? Das liegt daran, dass der Ausdruck sowohl oben als auch unten im Bruch mit einem Malzeichen verbunden ist und somit gekürzt werden kann.

Subtrahiere.

Bruchgleichungen, Beispiele, Lösen, StudySmarter

Teile durch 4.

Bruchgleichungen, Beispiele, Lösen, StudySmarter

4. Prüfe nun, ob das Ergebnis in deiner Definitionsmenge enthalten ist.

Bruchgleichungen, Beispiele, Lösen, StudySmarter

5. Also ist die Lösungsmenge der Gleichung:

Bruchgleichungen, Beispiele, Lösen, StudySmarter

Du kannst die Lösung eines Bruchterms auch graphisch ermitteln. Wie das funktioniert, zeigen wir dir in folgendem Beispiel.

Bruchgleichungen mit Bruchterm graphisch lösen

Aufgabe 3

Dir ist diese Bruchgleichung gegeben. Bestimmen deren Lösungsmenge.

Bruchgleichungen, Beispiele, Lösen, StudySmarter

Um dies graphisch zu tun, zeichnest du für den Bruchterm auf der linken Seite des Gleichheitszeichens die Funktion f(x).

Bruchgleichungen, Beispiele, Lösen, StudySmarter

Für den Zahlterm auf der rechten Seite des Gleichheitszeichens die Funktion.

Bruchgleichungen, Bruchgleichung mit einem Bruchterm Beispiel, StudySmarterAbbildung 1: Funktionenf(x) und g(x) mit Schnittpunkt S

Um die Lösungen der obigen Gleichung jetzt zu ermitteln, musst du alle Schnittpunkte von f(x) und g(x) finden. In unserem Beispiel ist das nur einer, nämlich der Schnittpunkt. Die Bruchgleichung hat also die Lösungsmenge:

Bruchgleichungen, Beispiele, Lösen, StudySmarter

Solche Aufgaben zu Bruchgleichungen waren noch relativ einfach, oder? Komplizierter wird es mit mehreren Bruchtermen in der Bruchgleichung. Sehen wir uns das einmal an.

Bruchgleichungen mit mehreren Bruchtermen rechnerisch lösen

Bruchgleichungen können auch mehr als einen Bruchterm enthalten. Die Bruchterme können ganz verschieden sein und sich auf beide Seiten des Gleichheitszeichens verteilen. So löst du die Bruchgleichung trotzdem ohne Probleme:

  1. Lege die Definitionsmenge fest.
  2. Bringe die Bruchterme auf eine Seite des Gleichheitszeichens.
  3. Bringe nun alle Brüche auf einen Hauptnenner.
  4. Multipliziere beide Seiten der Gleichung mit dem Hauptnenner.
  5. Die so erhaltene Gleichung kannst du mit der dir bekannten Vorgehensweise zum Lösen einer Gleichung auflösen.
  6. Überprüfe, ob deine Lösung in der Definitionsmenge liegt.
  7. Notiere deine Lösungsmenge.

1. Definitionsmenge von Bruchgleichungen mit mehreren Brüchen

Da du in diesem Fall nicht nur einen Bruchterm hast, sondern gleich mehrere, gibt es auch verschiedene Nenner, welche nicht 0 werden dürfen. Du musst aus der Definitionsmenge also sehr wahrscheinlich mehrere Zahlen ausschließen.

Aufgabe 4

Die Definitionsmenge der Bruchgleichung

Bruchgleichungen, Beispiele, Lösen, StudySmarter

ist:

Bruchgleichungen, Beispiele, Lösen, StudySmarter

Um das herauszufinden, nimmst du dir von jedem Bruchterm in der Bruchgleichung den Nenner, setzt diesen gleich 0 und löst nach x auf.

Da die beiden Bruchterme schon denselben Nenner haben, reicht es einmal zu zeigen, dass gilt:

Bruchgleichungen, Beispiele, Lösen, StudySmarter

So erhält du alle Werte, welche du für x in dieser Bruchgleichung nicht einsetzen darfst.

Dieser Schritt ist der Gleiche, wie beim Lösen mit nur einem Bruchterm. Hat deine Bruchgleichung gleich mehrere Bruchterme, gibt es aber noch ein paar Schritte mehr zu erledigen.

2. und 3. Brüche auf eine Seite und auf einen Hauptnenner bringen

Wenn du zwei ungleichnamige Brüche auf einen gemeinsamen Nenner bringen willst, suchst du zunächst nach dem kleinsten gemeinsamen Vielfachen der Nenner. Hast du diesen gefunden, erweiterst du die Brüche auf diesen gemeinsamen Nenner und kannst sie dann zusammenziehen. Solltest du dir mit diesem Verfahren noch unsicher sein, schau gerne im Artikel Brüche gleichnamig machen vorbei.

Aufgabe 5

Wir führen unser Beispiel von oben mit folgender Bruchgleichung weiter. Die Definitionsmenge haben wir bereits festgelegt. Jetzt müssen wir alle Bruchterme auf eine Seite verschieben und sie danach auf einen Hauptnenner bringen.

Bruchgleichungen, Beispiele, Lösen, StudySmarter

Bringe zunächst beide Bruchterme auf eine Seite des Gleichzeichens, indem duBruchgleichungen, Beispiele, Lösen, StudySmarterrechnest. (Schritt 2)

In diesem Fall besitzen beide Brüche schon den gleichen Nenner. Es entfällt demnach Schritt 3. Ziehe nun die beiden Brüche zusammen.

Bruchgleichungen, Beispiele, Lösen, StudySmarter

Du erhältst eine Gleichung mit nur noch einem Bruchterm.

Wenn du alle Brüche gleichnamig gemacht und danach zusammengezogen hast, gehst du so weiter vor, wie du es bei Bruchgleichungen mit einem Bruchterm tun würdest.

4. bis 7. Bruch auflösen und Lösungsmenge finden

Aufgabe 5

Wir greifen das obige Beispiel wieder auf und suchen die Lösungsmenge von:

Bruchgleichungen, Beispiele, Lösen, StudySmarter

Die Definitionsmenge dieser Bruchgleichung ist:

Bruchgleichungen, Beispiele, Lösen, StudySmarter

Um die Lösungsmenge zu erhalten, multiplizierst du mit . (Schritt 4)

Bruchgleichungen, Beispiele, Lösen, StudySmarter

Danach rechnest du +. (Schritt 5)

Bruchgleichungen, Beispiele, Lösen, StudySmarter

Um den Wert für x zu bekommen, teilst du noch durch 10.

Bruchgleichungen, Beispiele, Lösen, StudySmarter

Da die 1 in der Definitionsmenge D liegt, gilt (Schritt 6 und 7):

Bruchgleichungen, Beispiele, Lösen, StudySmarter

Bruchgleichungen mit mehreren Bruchtermen graphisch lösen

Genau wie bei Bruchgleichungen mit einem Bruchterm, gibt es auch die Möglichkeit, die Bruchgleichung über die graphische Darstellung zu lösen. Dafür werden die Terme auf beiden Seiten des Gleichzeichens als Funktionen dargestellt und deren Schnittpunkt ermittelt.

Aufgabe 6

Wir betrachten die folgende Bruchgleichung:

Bruchgleichungen, Beispiele, Lösen, StudySmarter

Um ihre Lösung graphisch zu ermitteln, zeichnen wir die beiden Funktionen:

Bruchgleichungen, Beispiele, Lösen, StudySmarter

Bruchgleichungen, Beispiele, Lösen, StudySmarter

Bruchgleichungen, Bruchgleichung mit mehreren Bruchtermen Beispiel, StudySmarter

Abbildung 2: Funktionen f(x) und g(x) mit Schnittpunkt S

Man erkennt sofort, dass die beiden Funktionen sich am Punktschneiden. Die Lösung der obigen Bruchgleichung ist also:

Bruchgleichungen, Beispiele, Lösen, StudySmarter

Bruchgleichungen umstellen, vereinfachen und lösen

Um deine Bruchgleichung zu lösen, gibt es einige hilfreiche Tipps, durch welche du schneller zur korrekten Lösung findest.

Kehrwert bilden

Bei manchen Gleichungen ist es sinnvoll den Kehrwert zu bilden, da man sie dann leichter auflösen kann. Besonders hilfreich ist das bei Brüchen ohne Variable im Zähler.

Aufgabe 7

Bilde den Kehrwert der Gleichung und löse die Gleichung dann weiter auf.

Bruchgleichungen, Beispiele, Lösen, StudySmarter

Der Kehrwert ist:

Bruchgleichungen, Beispiele, Lösen, StudySmarter

Das können wir vereinfachen zu:

Bruchgleichungen, Beispiele, Lösen, StudySmarter

Die Lösungsmenge der Gleichung ist also:

Bruchgleichungen, Beispiele, Lösen, StudySmarter

Multiplizieren über Kreuz

Diese Vorgehensweise wird häufig bei Bruchgleichungen mit zwei Bruchtermen angewendet. Die Bruchterme sollten dafür auf die beiden Seiten des Gleichzeichens aufgeteilt sein.

Beim Überkreuz multiplizieren multiplizierst du den Zähler des linken Terms mit dem Nenner des rechten Terms und den Zähler des rechten Terms mit dem Nenner des linken Terms. Durch dieses Vorgehen verlierst du die Brüche und kannst die Gleichung wie gewohnt auflösen.

Überkreuz multiplizieren:

Bruchgleichungen Formel Überkreuz multiplizieren StudySmarterBruchgleichungen, Beispiele, Lösen, StudySmarter wird zu Bruchgleichungen Formel Überkreuz multiplizieren StudySmarterBruchgleichungen, Beispiele, Lösen, StudySmarter

Üben wir das direkt an einem Beispiel.

Beispielsweise würde

Bruchgleichungen, Beispiele, Lösen, StudySmarter

durch Überkreuz multiplizieren zu:

Bruchgleichungen, Beispiele, Lösen, StudySmarter

Gleichung umstellen

Außerdem kannst du eine Bruchgleichung lösen, indem du sie in folgende Form bringst:

Bruchgleichungen, Beispiele, Lösen, StudySmarter

Um anschließend auf die Lösungsmenge zu kommen, gehst du folgendermaßen vor:

  1. Setze den Zähler gleich null und finde heraus, für welche Werte dieser gleich null wird.
  2. Den Wert, welchen du herausbekommen hast, setzt du in den Nenner ein. Das Ergebnis darf nicht null werden.

Aufgabe 8

Bringe folgende Bruchgleichung

Bruchgleichungen, Beispiele, Lösen, StudySmarter

in die Form:

Bruchgleichungen, Beispiele, Lösen, StudySmarter

Löse diese dann auf.

Lösung

Bringe die obige Gleichung zunächst in die obige Form:

Bruchgleichungen, Beispiele, Lösen, StudySmarter

Setze nun den Zähler gleich 0 und löse auf.

Bruchgleichungen, Beispiele, Lösen, StudySmarter

Setze das Ergebnis, also in den Nenner ein.

Bruchgleichungen, Beispiele, Lösen, StudySmarter

Da der Nenner nicht 0 wird, stimmt das Ergebnis und die Lösungsmenge ist:

Bruchgleichungen, Beispiele, Lösen, StudySmarter

So, die Theorie und das Vorgehen zur Lösung solcher Bruchgleichungen haben wir damit bereits kennengelernt. Dein neues Wissen dazu kannst du gleich in den folgenden Übungsaufgaben noch einmal vertiefen.

Bruchgleichungen – Übungsaufgaben

Aufgabe 9: Brüche auf einen Nenner bringen

Bringe folgende Bruchgleichung auf den gleichen Nenner.

Bruchgleichungen, Beispiele, Lösen, StudySmarter

Lösung

Bringe zunächst beide Bruchterme auf eine Seite des Gleichzeichens.

Bruchgleichungen, Beispiele, Lösen, StudySmarter

Mache die beiden Bruchterme gleichnamig, damit du sie zusammenziehen kannst. Dafür benötigst du das kleinste gemeinsame Vielfache von 1 und 4, welches 4 ist.

Du erweiterst den Bruch also mit 4.

Bruchgleichungen, Beispiele, Lösen, StudySmarter

Du erhältst also die Gleichung,

Bruchgleichungen, Beispiele, Lösen, StudySmarter

welche du dann weiter umformen kannst zu:

Bruchgleichungen, Beispiele, Lösen, StudySmarter

Aufgabe 10

Finde für folgende Bruchgleichung zunächst die Definitionsmenge und bestimme dann die Lösungsmenge.

Bruchgleichungen, Beispiele, Lösen, StudySmarter

Lösung

Die Definitionsmenge der obigen Gleichung ist:

Bruchgleichungen, Definitionsmenge, StudySmarter

Die 12 wird als Wert für x aus der Definitionsmenge ausgeschlossen, da für sie der Nenner Null und somit die Gleichung ungültig werden würde.

Du kannst jetzt die Gleichung nach x auflösen.

Multipliziere dafür beide Seiten der Gleichung zunächst mit dem Nenner des Bruchterms.

Bruchgleichungen, Beispiele, Lösen, StudySmarter

Jetzt kannst du wie gewohnt nach x auflösen.

Bruchgleichungen, Beispiele, Lösen, StudySmarter

Da 5 in der Definitionsmenge liegt, ist:

Bruchgleichungen, Beispiele, Lösen, StudySmarter

Bruchgleichungen, Übungsaufgabe, StudySmarter

Abbildung 3: Funktionen f(x) und g(x) mit Schnittpunkt S

Aufgabe 11

Finde für folgende Bruchgleichung zunächst die Definitionsmenge und bestimme dann die Lösungsmenge.

Bruchgleichungen, Beispiele, Lösen, StudySmarter

Lösung

Die Definitionsmenge der obigen Gleichung ist

Bruchgleichungen, Beispiele, Lösen, StudySmarter

Wir bringen zunächst beide Bruchterme auf eine Seite der Gleichung und ziehen diese zusammen.

Bruchgleichungen, Beispiele, Lösen, StudySmarter

Anschließend multiplizieren wir mit dem Nenner des Bruchs und lösen dann die Gleichung weiter auf.

Bruchgleichungen, Beispiele, Lösen, StudySmarter

Da die Lösung in der Definitionsmenge enthalten ist, ist

Bruchgleichungen, Übungsaufgabe, StudySmarter

Abbildung 4: Funktionen f(x) und g(x) mit Schnittpunkt S

Bruchgleichungen - Das Wichtigste

  • Bruchgleichungen sind Gleichungen, welche mindestens einen Bruchterm enthalten.
  • In einer Bruchgleichung können ein oder mehrere Bruchterme vorhanden sein.
  • Die Definitionsmenge enthält alle reellen Zahlen, bis auf solche, für welche der Nenner gleich 0 werden würde.
  • Zum Lösen einer Bruchgleichung bringst du zunächst alle Bruchterme auf eine Seite des Gleichzeichens und suchst dann ihren gemeinsamen Nenner.
  • Der wichtigste Schritt beim Lösen der Bruchgleichung ist das Multiplizieren mit dem Nenner bzw. Hauptnenner.
  • Über Kreuz multiplizieren, den Kehrwert bilden oder die Gleichung umstellen können hilfreiche Tipps zum Lösen dieser sein.
  • Du kannst Bruchgleichungen auch graphisch lösen.

Häufig gestellte Fragen zum Thema Bruchgleichungen

  1. Lege die Definitionsmenge fest (keine Division durch 0).
  2. Bringe alle Bruchterme auf eine Seite des Gleichheitszeichens.
  3. Bringe alle Brüche auf einen Hauptnenner.
  4. Multipliziere beide Seiten der Gleichung mit diesem Hauptnenner.
  5. Die so erhaltene Gleichung kannst du mit einer dir bekannten Vorgehensweise zum Lösen einer Gleichung auflösen.
  6. Überprüfe, ob deine Lösung in der Definitionsmenge liegt.

Um auf den Hauptnenner einer Bruchgleichung zu kommen, bringe zunächst alle Bruchterme auf eine Seite der Gleichung. Anschließend bestimmst du das kleinste gemeinsame Vielfache der beiden Nenner, erweiterst die Brüche entsprechend und kannst dann die Brüche zusammenziehen.

Die Lösungsmenge einer Bruchgleichung berechnet man, indem man den Bruch bzw. die Brüche durch Multiplizieren mit dem Nenner auflöst und danach wie gewohnt weiter umformt.

Nein, Bruchgleichungen sind keine linearen Gleichungen, da sie die Variable im Nenner haben. Würde die Variable nur im Zähler stehen, wäre die Gleichung keine Bruchgleichung mehr, sondern eine lineare Gleichung.

Finales Bruchgleichungen Quiz

Frage

Welche Werte werden in der Definitionsmenge von Bruchgleichungen ausgeschlossen?

Antwort anzeigen

Antwort

Werte, für welche der Nener gleich Null werden würde, werden in der Definitionsmenge von Bruchgleichungen ausgeschlossen.

Frage anzeigen

Frage

Bestimme die Lösung folgender Bruchgleichung:

Antwort anzeigen

Antwort

Die Lösungsmenge der Bruchgleichung ist L = {4}.

Frage anzeigen

Frage

Was ist eine Bruchgleichung?

Antwort anzeigen

Antwort

Eine Bruchgleichung ist eine Gleichung, welche mindestens einen Bruchterm enthält.

Frage anzeigen

Frage

Was ist der erste Schritt, wenn du eine Bruchgleichung mit einem Bruchterm auflösen möchtest?

Antwort anzeigen

Antwort

Du multiplizierst beide Seiten der Gleichung mit dem Nenner des Bruches. So löst sich der Bruch auf und du kannst die Gleichung wie gewohnt weiter auflösen.

Frage anzeigen

Frage

Ist folgende Gleichung eine Bruchgleichung?


Antwort anzeigen

Antwort

Nein

Frage anzeigen

Frage

Ist folgende Gleichung eine Bruchgleichung?


Antwort anzeigen

Antwort

Ja

Frage anzeigen

Frage

​Enthält folgende Bruchgleichung ein oder mehrere Bruchterme?


Antwort anzeigen

Antwort

Die Gleichung enthält einen Bruchterm.

Frage anzeigen

Frage

Bestimme die Definitionsmenge folgender Bruchgleichung:


Antwort anzeigen

Antwort

Die Definitionsmenge der obigen Bruchgleichung ist:


Frage anzeigen

Frage

Was muss bei der Definitionsmenge von Bruchgleichungen mit mehreren Brüchen beachtet werden?

Antwort anzeigen

Antwort

Es gibt mehrere Werte für x aus der Definitionsmenge auszuschließen, da es mehrere Nenner gibt, welche nicht 0 werden dürfen.

Frage anzeigen

Frage

Wie bringst du Brüche auf einen gemeinsamen Nenner?


Antwort anzeigen

Antwort

Finde das kleinste gemeinsame Vielfache der Brüche und erweitere diese entsprechend.

Frage anzeigen

Frage

Um das Lösen einer Bruchgleichung einfacher zu machen kannst du...

Antwort anzeigen

Antwort

... den Kehrwert bilden.

Frage anzeigen

Frage

Ist folgende Gleichung eine Bruchgleichung?


Antwort anzeigen

Antwort

Nein

Frage anzeigen

Frage

Bestimme die Definitionsmenge folgender Bruchgleichung.


Antwort anzeigen

Antwort

Die Definitionsmenge der obigen Gleichung ist

.


Frage anzeigen

Frage

Eine Bruchgleichung ...

Antwort anzeigen

Antwort

... kann mehrere Bruchterme haben.

Frage anzeigen

Frage

Die folgende Bruchgleichung hat...


Antwort anzeigen

Antwort

... zwei Bruchterme.

Frage anzeigen
Mehr zum Thema Bruchgleichungen
60%

der Nutzer schaffen das Bruchgleichungen Quiz nicht! Kannst du es schaffen?

Quiz starten

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Gerade angemeldet?

Ja
Nein, aber ich werde es gleich tun

Melde dich an für Notizen & Bearbeitung. 100% for free.