Select your language

Suggested languages for you:
Log In Anmelden
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Die All-in-one Lernapp:

  • Karteikarten
  • NotizenNotes
  • ErklärungenExplanations
  • Lernpläne
  • Übungen
App nutzen

Wurzel potenzieren

Save Speichern
Print Drucken
Edit Bearbeiten
Melde dich an und nutze alle Funktionen. Jetzt anmelden
Wurzel potenzieren

Wurzeln potenzieren und radizieren – Das könnte in etwa so aussehen:

Wurzel potenzieren Wurzeln Potenzieren und Radizieren Übersicht StudySmarterAbbildung 1: Potenzierte und radizierte "Wurzeln"

Doch halt: Baumwurzeln potenzieren und radizieren? Nein – Die Baumwurzel als Basis der Potenz und unter dem Wurzelzeichen in Blau stehen symbolisch für Wurzeln im mathematischen Sinne. Diese können ganz verschiedene Formen haben. Wie das Potenzieren und Radizieren von mathematischen Wurzeln nun funktioniert und welche Rechengesetze es dabei zu beachten gibt, erfährst Du in dieser Erklärung.

Wiederholung der Basics – Wurzel, Potenzieren & Radizieren

Damit Du Wurzeln potenzieren und radizieren kannst, ist ein grundlegendes Verständnis der drei Begriffe Wurzel, Potenzieren und Radizieren erforderlich. In den folgenden Abschnitten findest Du eine kurze Wiederholung der drei Begriffe.

Wurzel

Eine Wurzel in der Mathematik besteht meist aus drei Teilen: dem Wurzelzeichen, dem Wurzelexponenten und dem Radikanden.

Die Bezeichnung der einzelnen Teile des Wurzelausdrucks sieht folgendermaßen aus:

Wurzel potenzieren Wiederholung Wurzel StudySmarterAbbildung 2: Bezeichnung der Wurzelbestandteile

Eine Wurzel kann auch als Potenz geschrieben werden:

Wurzel potenzieren Wiederholung Wurzel StudySmarter

Den Ausdruck kannst Du als "n-te Wurzel von a" aussprechen.

Bei einer Wurzel mit dem Wurzelexponenten 2 muss dieser nicht unbedingt hingeschrieben werden: . Ist der Wurzelexponent 2, so handelt es sich um eine Quadratwurzel.

Potenzieren

Das Potenzieren gehört, wie das Addieren oder Subtrahieren, auch zu den Grundrechenarten.

Potenzieren ist eine verkürzte Schreibweise für das mehrmalige Multiplizieren eines Faktors a mit sich selbst. Der Exponent n gibt an, wie oft dieser Faktor mit sich selbst multipliziert wird.

Allgemein gilt beim Potenzieren:

Wurzel potenzieren Wiederholung Potenzieren StudySmarter

  • a ist die Basis und eine reelle Zahl
  • n ist der Exponent und eine natürliche Zahl
  • wird Potenz oder Potenzwert genannt

Wenn Du das Thema Potenzieren noch einmal vertiefen möchtest, kannst Du das in der Erklärung "Potenzieren".

Radizieren

Das Radizieren gehört auch zu den Grundrechenarten und ist eine Umkehrung des Potenzierens.

Radizieren ist das Wurzelziehen. Es gilt die Überlegung:

Wurzel potenzieren Definition Radizieren StudySmarter

Der Wurzelexponent n ist der Wert, mit dem der Wurzelwert x potenziert werden muss, um den Radikanden a der Wurzel zu erhalten:

Wurzel potenzieren Wiederholung Radizieren StudySmarter

Bei geraden Wurzelexponenten n muss der Radikand a positiv oder 0 sein. Bei ungeraden Wurzelexponenten n kann der Radikand a auch negativ sein.

Auch Wurzeln selbst dürfen potenziert und radiziert werden. Wie das geht, lernst Du in den folgenden Abschnitten kennen.

Wurzel potenzieren und radizieren – Übersicht

Die drei relevanten Begriffe Wurzel, Potenzieren und Radizieren hast Du gerade wiederholt. Alle reellen Zahlen können potenziert werden und alle reellen Zahlen größer gleich der 0 können radiziert werden. Zu den reellen Zahlen zählen auch die Wurzeln selbst, deswegen dürfen diese ebenso potenziert und radiziert werden.

Wurzel potenzieren – Definition

Das Potenzieren von Wurzeln sieht gewissermaßen genauso aus, wie das Potenzieren von anderen reellen Zahlen.

Eine potenzierte Wurzel besitzt neben dem Wurzelexponenten n noch einen weiteren Exponenten m, mit dem potenziert wird:

Wurzel potenzieren Wurzel potenzieren und radizieren Definition StudySmarter

Der gesamte Ausdruck ist nun die Basis der Potenz.

Jede beliebige Wurzel darf potenziert werden.

Wurzeln potenzieren – Rechengesetz

Um den Exponenten jetzt zu verrechnen, gibt es Rechengesetze, die Du anwenden kannst.

Eine Wurzel wird mit einem Exponenten m potenziert, indem der Radikand a der Wurzel mit dem Exponenten m potenziert wird:

Wurzel potenzieren Wurzel potenzieren und radizieren Rechengesetz StudySmarter

Da das Radizieren das Gegenteil vom Potenzieren ist, heben sich, wenn der Exponent m dem Wurzelexponent n entspricht, diese auf und das Ergebnis ist der Radikand: Wurzel potenzieren Wurzel potenzieren und radizieren Rechengesetz StudySmarter

Wurzeln potenzieren – Beispiel

Die Umsetzung des Potenzierens von Wurzeln kannst Du Dir an einem Beispiel ansehen.

Folgende Wurzelpotenzen sollen gelöst werden:

Es gilt

Wurzel potenzieren Wurzel potenzieren und radizieren Definition StudySmarter

also wird der Exponent m, in diesem Beispiel 6, unter die Wurzel gezogen und die Basis a, hier 4, zuerst potenziert.

Daraus kannst Du Deine Lösung errechnen:

Das Beispiel zeigt, dass zuerst die Potenz außen an der Wurzel steht. Um zu verdeutlichen, dass die gesamte Wurzel potenziert werden soll, wird eine Klammer verwendet. Danach kannst Du das Wurzelgesetz anwenden und die Zahl unter der Wurzel potenzieren. Daraus kannst Du dann das Ergebnis berechnen.

Wurzeln potenzieren – Umformen in Potenzschreibweise

Wurzeln können neben der herkömmlichen Schreibweise auch als Potenz geschrieben werden: Wurzel potenzieren Wurzel potenzieren Umformung StudySmarter.

Auch Deine potenzierte Wurzel kannst Du als Potenz schreiben:

Wurzel potenzieren Wurzel potenzieren Umformung StudySmarter

Dabei ist der Radikand a die Basis und der Exponent eine gebrochen rationale Zahl mit dem Wurzelexponenten n im Nenner und dem Exponenten m im Zähler.

Die Potenzschreibweise der Wurzel kann Dir behilflich sein, Wurzeln mit größeren Zahlen auszurechnen. Dafür kannst Du Dir erneut das Beispiel von gerade eben ansehen.

Folgende Wurzelpotenzen sollten gelöst werden:

Wegen des Rechengesetzes Wurzel potenzieren Wurzel potenzieren und radizieren Definition StudySmarter wurde der Exponent m unter die Wurzel gezogen.

Um nun schneller und ohne Taschenrechner das Gesamtergebnis der Wurzelpotenz zu berechnen, kannst Du Deine Wurzel in die Potenzschreibweise umschreiben:

Wurzel potenzieren Wurzel potenzieren und radizieren Definition StudySmarter

Nun kannst Du im Exponenten den Bruch kürzen und Dein Ergebnis berechnen:

Wurzel potenzieren Wurzel potenzieren und radizieren Definition StudySmarter

Somit kannst Du das Ergebnis der Wurzelpotenz effizient ohne Taschenrechner lösen. Deshalb ist es manchmal hilfreich, die Wurzel in eine Potenz umzuschreiben.

Neben dem Potenzieren ist es ebenso möglich, eine Wurzel selbst zu radizieren.

Wurzeln radizieren – Definition

Das Radizieren von Wurzeln funktioniert genau so, wie das Wurzelziehen von positiven reellen Zahlen.

Wenn Du eine Wurzel radizierst, ziehst Du die Wurzel mit dem Wurzelexponenten m aus einer Wurzel mit dem Wurzelexponenten n und dem Radikanden a.

Wurzel potenzieren Wurzel potenzieren und radizieren Definition StudySmarter

Du erhältst so eine Doppelwurzel. Dabei ist der neue Radikand.

Da das Ergebnis von Wurzeln mit geraden Wurzelexponenten n nicht negativ sein kann, darf jede Wurzel mit geraden Wurzelexponenten n radiziert werden. Wenn von Deiner Ursprungswurzel der Radikand a negativ und der Wurzelexponent n ungerade ist, darfst Du nur mit einem ungeraden Wurzelexponenten m radizieren.

Wurzeln radizieren – Rechengesetze

Beim Radizieren einer Wurzel sind primär die Wurzelexponenten der Wurzeln relevant. Um eine Wurzel zu radizieren, gibt es ebenfalls Rechengesetze, die Du anwenden kannst.

Die Wurzelexponenten n und m können beliebig vertauscht werden:

Wurzel potenzieren Wurzel potenzieren und radizieren Rechengesetz StudySmarter

Diese Regel kann Dir helfen, radizierte Wurzeln zu vereinfachen.

Bei radizierten Wurzeln werden die Wurzelexponenten n und m multipliziert, während der Radikand a unter einem Wurzelzeichen stehen bleibt:

Wurzel potenzieren Wurzel potenzieren und radizieren Rechengesetz StudySmarter

Wurzeln radizieren – Beispiele

Die Umsetzung des Radizierens von Wurzeln kannst Du Dir an einem Beispiel ansehen.

Folgende Aufgabe soll gelöst werden:

Es gilt

Wurzel potenzieren Wurzel potenzieren und radizieren Definition StudySmarter

also werden die Wurzelexponenten n und m miteinander multipliziert.

Daraus kannst Du Deine Lösung errechnen:

Wurzel potenzieren Wurzel potenzieren und radizieren Definition StudySmarter

Das Vertauschen der Wurzelexponenten kann Dir behilflich sein, radizierte Wurzeln ohne ganze Zahlen als Ergebnis so weit wie möglich zu vereinfachen. Dafür kannst Du Dir ebenfalls ein Beispiel ansehen.

Folgende Aufgabe soll so weit wie möglich ohne Taschenrechner vereinfacht werden:

Es gilt

Wurzel potenzieren Wurzel potenzieren und radizieren Definition StudySmarter

also werden die Wurzelexponenten 2 und 3 vertauschen.

Damit kannst Du Deine Doppelwurzel vereinfachen:

Wurzel potenzieren Wurzel potenzieren und radizieren Definition StudySmarter

Wurzeln radizieren – Anwendung rückwärts

Angewendet wird das Prinzip des Radizierens von Wurzeln auch rückwärts. Das heißt, der Wurzelexponent wird als ein Produkt aus zwei Zahlen m und n geschrieben, um dann aus der Wurzel eine Doppelwurzel zu machen. Die innere Wurzel wird dann als Erstes aufgelöst. Dies kann Dir dabei helfen, Wurzeln mit hohem Wurzelexponenten zu lösen. Das kannst Du Dir an einem Beispiel ansehen.

Es soll folgende Wurzel gelöst werden:

Den Wurzelexponenten 4 kannst Du in das Produkt zerlegen:

Wurzel potenzieren Wurzel potenzieren und radizieren Definition StudySmarter

Diese Wurzel kannst Du nun mit der Umkehrung der Regel zum Radizieren von Wurzeln als Doppelwurzel mit den Wurzelexponenten m und n schreiben:

Wurzel potenzieren Wurzel potenzieren und radizieren Definition StudySmarter

Nun kannst Du erst die innere Wurzel lösen. Durch das kleine Einmaleins weißt Du, dass

und damit

gilt.

Damit kannst Du weiter rechnen und erhältst das Ergebnis:


Wurzel potenzieren Wurzel potenzieren und radizieren Definition StudySmarter

Wurzel potenzieren und radizieren Zusammenfassung – Unterschied

Radizieren ist im Prinzip das Gegenteil von Potenzieren. Dies gilt auch für das Potenzieren und Radizieren von Wurzeln. Um den Unterschied zwischen Potenzieren und Radizieren von Wurzeln zu verdeutlichen, kannst Du Dir das Schaubild in Abbildung 3 ansehen.

Wurzel potenzieren Wurzeln potenzieren und radizieren Unterschied StudySmarterAbbildung 3: Unterschied Wurzel potenzieren und radizieren

Beim Radizieren ziehst Du die Wurzel aus einer Wurzel und erhältst eine Doppelwurzel . Beim Potenzieren wird die ursprüngliche Wurzel zur Basis der Potenz mit dem Exponenten m. Wenn Du die Potenz mit der Wurzel als Basis und dem Exponenten m jetzt mit der Wurzel radizierst, erhältst Du wieder die ursprüngliche Wurzel . Umgekehrt, wenn Du die Doppelwurzel mit dem Exponenten m potenzierst, erhältst Du ebenfalls wieder die ursprüngliche Wurzel .

Wurzel potenzieren und radizieren – Aufgaben

Mit den folgenden Aufgaben kannst Du Dein Wissen zum Potenzieren und Radizieren von Wurzeln vertiefen.

Aufgabe 1

Löse folgende Aufgabe mithilfe der Wurzelgesetze:

Wurzel potenzieren Wurzel potenzieren und radizieren Definition StudySmarter

Lösung

Es gilt:

Wurzel potenzieren Wurzel potenzieren und radizieren Definition StudySmarter

Damit kannst Du die Aufgabe lösen:

Wurzel potenzieren Wurzel potenzieren und radizieren Definition StudySmarter

Falls Du keinen Taschenrechner zur Hand hast, kannst Du diese Aufgabe auch mithilfe der Potenzschreibweise lösen:

Wurzel potenzieren Wurzel potenzieren und radizieren Definition StudySmarter

Aufgabe 2

Löse folgende Aufgabe mithilfe der Wurzelgesetze:

Wurzel potenzieren Wurzel potenzieren und radizieren Definition StudySmarter

Lösung

Es gilt:

Wurzel potenzieren Wurzel potenzieren und radizieren Definition StudySmarter

Damit kannst Du die Aufgabe lösen:

Wurzel potenzieren Wurzel potenzieren und radizieren Definition StudySmarter

Aufgabe 3

Löse folgende Aufgabe:

Wurzel potenzieren Wurzel potenzieren und radizieren Definition StudySmarter

Lösung

Es gilt:

Wurzel potenzieren Wurzel potenzieren und radizieren Definition StudySmarter

Damit kannst Du die Aufgabe lösen:

Wurzel potenzieren Wurzel potenzieren und radizieren Definition StudySmarter

Wenn Du keinen Taschenrechner hast oder die 6. Wurzel aus 64 nicht auswendig kannst, kannst Du einen anderen Lösungsweg anwenden, denn Du kannst auch erst die innere Wurzel ausrechnen:

Wurzel potenzieren Wurzel potenzieren und radizieren Definition StudySmarter

Wurzeln potenzieren – Das Wichtigste

  • ist die n-te Wurzel aus a. Gesucht ist eine Zahl x, sodass gilt.

  • Eine potenzierte Wurzel besitzt neben dem Wurzelexponenten n noch einen weiteren Exponenten m:Wurzel potenzieren Wurzel potenzieren und radizieren Definition StudySmarter
  • Eine Wurzel wird mit einem Exponenten m potenziert, indem der Radikand a der Wurzel mit dem Exponenten m potenziert wird:Wurzel potenzieren Wurzel potenzieren und radizieren Rechengesetz StudySmarter
  • Die Potenzschreibweise einer potenzierten Wurzel lautet:Wurzel potenzieren Wurzel potenzieren Umformung StudySmarter

  • Wenn Du eine Wurzel radizierst, ziehst Du die Wurzel mit dem Wurzelexponenten m aus einer Wurzel mit dem Wurzelexponenten n und dem Radikanden a:Wurzel potenzieren Wurzel potenzieren und radizieren Definition StudySmarter

  • Folgende Rechengesetze gelten beim Radizieren von Wurzeln:

    • Die Wurzelexponenten n und m können beliebig vertauscht werden:Wurzel potenzieren Wurzel potenzieren und radizieren Rechengesetz StudySmarter

    • Bei radizierten Wurzeln werden die Wurzelexponenten n und m multipliziert, während der Radikand a unter einem Wurzelzeichen stehen bleibt:Wurzel potenzieren Wurzel potenzieren und radizieren Rechengesetz StudySmarter

  • Das Radizieren von Wurzeln wird oft rückwärts angewendet, um Wurzeln zu vereinfachen.


Nachweise

  1. Lamm (2016). Potenzen & Wurzeln - ... kinderleicht erlernen. Kohl Verlag
  2. Körner (2011). Grundwissen Wurzeln und Potenzen. Persen Verlag

Häufig gestellte Fragen zum Thema Wurzel potenzieren

Eine Wurzel schreibst Du als Potenz, indem Du dem Radikanden a einen Bruch als Exponenten gibst, in dem im Zähler eine 1 steht und im Nenner der Wurzelexponent n.

Der Exponent verändert sich beim Wurzelziehen gar nicht. Wenn der Wurzelexponent und der Exponent des Radikanden übereinstimmen, heben sich diese aber auf und der Radikand bleibt als Ergebnis übrig.

Das Radizieren von Wurzeln funktioniert genau so, wie das Wurzelziehen von positiven reellen Zahlen. Wenn Du eine Wurzel radizierst, ziehst Du die Wurzel mit dem Wurzelexponenten m aus einer Wurzel mit dem Wurzelexponenten n und dem Radikanden a. Du erhältst eine Doppelwurzel, die Du durch Multiplikation der beiden Wurzelexponenten m und n zu einer Wurzel zusammenfassen kannst.

Du ziehst die Wurzel aus einer Potenz, indem Du den Potenzexponenten durch den Wurzelexponenten dividierst und die Basis behältst. 

Finales Wurzel potenzieren Quiz

Frage

Wie findet das Radizieren von Wurzeln in der Mathematik Anwendung?

Antwort anzeigen

Antwort

Angewendet wird das Prinzip des Radizierens von Wurzeln auch rückwärts. Das heißt, der Wurzelexponent  wird als ein Produkt aus zwei Zahlen m und n geschrieben, um dann aus der Wurzel eine Doppelwurzel zu machen. Die innere Wurzel wird dann als erstes aufgelöst. Dies kann Dir dabei helfen Wurzeln mit hohem Wurzelexponenten zu lösen.

Frage anzeigen
Mehr zum Thema Wurzel potenzieren
60%

der Nutzer schaffen das Wurzel potenzieren Quiz nicht! Kannst du es schaffen?

Quiz starten

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Gerade angemeldet?

Ja
Nein, aber ich werde es gleich tun

Melde dich an für Notizen & Bearbeitung. 100% for free.