Select your language

Suggested languages for you:
Log In Anmelden
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Die All-in-one Lernapp:

  • Karteikarten
  • NotizenNotes
  • ErklärungenExplanations
  • Lernpläne
  • Übungen
App nutzen

Substitution Nullstellen

Save Speichern
Print Drucken
Edit Bearbeiten
Melde dich an und nutze alle Funktionen. Jetzt anmelden
Mathe

In einigen Fällen kann das Medikament eines Herstellers mit einem ähnlichen Heilmittel eines anderen Produzenten ersetzt werden, ohne dass die gewünschte Wirkung verloren geht. Das ersetzende Medikament stellt dann ein Substitut dar.

Auch in der Mathematik spielt das eine Rolle: Hier bezeichnet die Substitution den Vorgang, in dem ein Teil eines Terms durch einen anderen ersetzt wird. Meistens vereinfacht Dir dabei die Anwendung der p/q-Formel die Rechnung.

Substitution allgemein erklärt

Mithilfe der Substitution kannst Du Gleichungen nach x auflösen. Vor allem bei solchen mit hohen Polynomen ist das häufig mit großem Aufwand verbunden. Durch die Substitution kannst Du Dir den Weg erleichtern, indem Du x2 durch z ersetzt. Dadurch kannst Du die Gleichung auflösen und anschließend wieder x einsetzen (Resubstitution). So gelingt es Dir, die Nullstellen zu ermitteln.

Doch bevor Du die Definition zur Substitution kennenlernst, solltest Du wissen, was Nullstellen überhaupt sind.

Eine Nullstelle einer Funktionist eine Zahl a aus der Definitionsmengeder Funktion, für dieNullstelle Substitution StudySmartergilt.

Grafisch bezeichnet die Nullstelle den x-Wert des Schnitt- oder Berührpunktes einer Funktion f mit der x-Achse.

Dabei ist die Nullstelle einer der wichtigsten Schnittpunkte einer Funktion. Sie gehört neben dem y-Achsenabschnitt zu den Schnittpunkten mit den Koordinatenachsen.

Substitution Nullstellen StudySmarterAbbildung 1: Nullstellen

Häufig berechnest Du Nullstellen mithilfe der p/q-Formel.

Mithilfe der p/q-Formel kannst Du Nullstellen einer quadratischen Funktion berechnen. Dafür benötigst Du folgenden Ausdruck:

Substitution p/q-Formel StudySmarter

Voraussetzung dafür ist die quadratische Funktion in Normalform:

Substitution p/q-Formel StudySmarter

Substitution: Nullstellen ganzrationaler Funktionen berechnen

Nun wirst Du lernen, wie man die Nullstellen einer ganzrationalen Funktion mithilfe der Substitution berechnet.

Unter der Substitution versteht man den Austausch eines Terms durch einen neuen. Dabei erfüllt der Term denselben Zweck:

Substitution Substitution StudySmarter

Die Resubstitution stellt die Wiederherstellung des Terms dar. Die Veränderung wird rückgängig gemacht:

Substitution Resubstitution StudySmarter

Für den Vorgang benötigst Du die vier folgenden Schritte:

1. Schritt:

Hier ersetzt Du jedes x2 durch ein z.

2. Schritt

Die neue Gleichung kannst Du jetzt mit der Mitternachtsformel oder der p/q-Formel berechnen und nach z auflösen.

3. Schritt

Nun gelangst Du zur Resubstitution, bei der Du den Parameter z wieder mit x2 tauschst.

4. Schritt

Zum Schluss musst Du noch die Wurzel ziehen, um x zu erhalten.

Häufig wird die Substitution bei der Ermittlung der Nullstellen ganzrationaler Funktionen angewendet. Daher wirst Du jetzt mehr über diese Funktionen erfahren.

Ganzrationale Funktionen

Diese Funktionen werden auch als Polynomfunktionen (mehrgliedrige Terme) bezeichnet.

Unter einer ganzrationalen Funktion oder Polynomfunktion des Grades n versteht man eine reele Funktion mit

,

Substitution Nullstellen Polynomfunktion StudySmarter.

Dabei verändert sich die Funktion entsprechend dem Wert, den Du für n einsetzt.

Substitution ganzrationale Funktion StudySmarterAbbildung 2: Ganzrationale Funktion

Die Parameter des Funktionsterms nennst Du folgendermaßen:

Koeffizienten
Exponentenn, n-1, 2, 1, 0
Gradder höchste vorkommende Exponent (hier n)
LeitkoeffizientKoeffizient vor dem größten vorkommenden Exponenten (hier)

Da die Ermittlung der Nullstellen bei ganzrationalen Funktionen kompliziert ist, kannst Du hier die Substitution anwenden.

Aufgabe

Löse die folgende Gleichung mithilfe der Substitution:

Da Du diese Gleichung nicht einfach nach x auflösen kannst, nutzt Du die Substitution zur Vereinfachung. Hierbei gehst Du nach den oben genannten Schritten vor.

1. Schritt: x2 durch z ersetzen

In diesem Schritt siehst Du, wie Du x2 durch z ersetzen kannst. Somit gelingt es Dir im nächsten Schritt, die Nullstellen mithilfe der p/q-Formel zu ermitteln.

2. Schritt: p/q-Formel

Um die p/q-Formel anzuwenden, musst Du die Gleichung gleich 0 setzen:

Nun kannst Du p und q ermitteln:

Setze p und q in die Formel ein:

In diesem Schritt hast Du die Nullstellen mithilfe der p/q-Formel berechnet. Nun kannst Du im nächsten Schritt resubstituieren.

3. Schritt: Resubstitution

Ersetze z mit x2:

Damit Du wieder zu Deinem Ursprungsformat gelangst, musst Du Deine Nullstellen für Deine eigentliche Gleichung berechnen. Das machst Du, indem Du die Wurzeln ziehst.

4. Schritt: Wurzel ziehen

Da Du aus negativen Zahlen keine Wurzel ziehen kannst, gibt es in diesem Fall nur zwei Lösungen, welcheundlauten.

Substitution Nullstellen StudySmarterAbbildung 3: Nullstellen

Durch die Substitution konntest Du soeben die Nullstellen Deiner Gleichung ermitteln.

Du kannst dieses Verfahren nicht immer anwenden. Bei manchen Funktionen musst Du auf die Polynomdivision zurückgreifen.

Polynomdivision

Mithilfe der Polynomdivision kannst Du die Nullstellen einer Polynomfunktion ermitteln. Dabei verfährst Du wie folgt.

Du kannst dabei die Regeln der schriftlichen Division beachten. Mehr zur Polynomdivision findest Du in der gleichnamigen Erklärung.

Stell Dir vor, Du hast die Polynomfunktion

gegeben und möchtest ihre Nullstellen herausfinden.

1. Schritt

Eine Nullstelle durch Ausprobieren ermitteln:

Die Funktion besitzt eine Nullstelle bei.

2. Schritt

Teile die Funktion durch x minus der Nullstelle aus Schritt 1:

3. Schritt

Teiledurch:

Womit musst Du x multiplizieren, um x2 zu erhalten?

4. Schritt

Multipliziere das Ergebnis mit der Klammer hinter dem Divisionszeichen und schreibe es unter das Polynom:

Du darfst dabei nicht vergessen, ein Minus vor Dein Ergebnis zu setzen.

5. Schritt

Subtrahiere das ursprüngliche Polynom mit dem Ergebnis aus Schritt 4:

6. Schritt

Teile Dein Zwischenergebniswie im zweiten Schritt durch x:

7. Schritt

Multipliziere Dein Ergebnis 1 mit der zweiten Klammer und subtrahiere anschließend:

Nun hast Du Dein Ergebnis der Polynomdivision ermittelt. Du kannst weitere Nullstellen der Funktion finden, indem Du das Ergebnis nach x auflöst:

Die Funktion besitzt zwei Nullstellen:.

Übungsaufgaben Substitution

Damit Du das Thema gut verinnerlichen kannst, folgen hier ein paar Übungsaufgaben.

Aufgabe 1

Löse die folgende Gleichung mithilfe der Substitution:

Lösung

1. Schritt: x2 durch z ersetzen

2. Schritt: p/q-Formel

Nun kannst Du p und q ermitteln:

Setze p und q in die Formel ein:

3. Schritt: Resubstitution

Jetzt ersetzt Du z mit x2:

4. Schritt: Wurzel ziehen

Um x zu erhalten, ziehst Du nun die Wurzel:

Du erhältst somit die Nullpunkte an den Stellen.

Aufgabe 2

Löse die folgende Gleichung mithilfe der Substitution:

Lösung

1. Schritt: x2 durch z ersetzen

2. Schritt: p/q-Formel

Setze p und q in die Formel ein:

3. Schritt: Resubstitution

Jetzt ersetzt du z mit x2:

4. Schritt: Wurzel ziehen

Du erhältst somit die Nullpunkte an den Stellen .

Substitution Nullstellen StudySmarterAbbildung 4: Nullstellen

Aufgabe 3

Löse die folgende Gleichung mithilfe der Substitution:

Lösung

1. Schritt:

2. Schritt:

Setze p und q in die Formel ein:

3. Schritt:

4. Schritt:

Du erhältst somit die Nullpunkte an den Stellen .

Substitution Nullstellen StudySmarterAbbildung 5: Nullstellen

Substitution - Das Wichtigste

  • Mithilfe der Substitution kannst Du Gleichungen nach x auflösen.
  • Sie ermöglicht Dir meistens die Anwendung der p/q-Formel und vereinfacht Dir somit die Rechnung.
  • Unter der p/q-Formel versteht man den Austausch eines Terms durch einen neuen:
  • Die Resubstitution ist die Wiederherstellung des ursprünglichen Terms:
  • Für die Substitution benötigst Du vier Schritte:
    • 1. Schritt: x2 durch z ersetzen.
    • 2. Schritt: p-q-Formel
    • 3. Schritt: z durch x2 ersetzen
    • 4. Schritt: Wurzel ziehen

Substitution Nullstellen

Das Substitutionsverfahren besteht aus der Substitution und Resubstitution. Das heißt, du ersetzt einen Term in einer Funktion mit einem Term, welcher die gleiche Bedeutung hat. Somit gelingt es dir einfacher, eine Funktion nach x aufzulösen. Bei der Resubstitution änderst du diesen Term wieder zum Ausgangsterm.

Du kannst die Substitution verwenden, wenn alle Exponenten der Funktion gerade sind. Ist dies nicht der Fall musst du auf die Polynomdivision zurückgreifen.

Unter der Substitution versteht man den Austausch eines Terms durch einen neuen. Dabei erfüllt der Term den selben Zweck.

Die Grenzrate der Substitution ist immer negativ. Denn wenn der Konsument auf eine Einheit von Gut 1 verzichtet, muss er die konsumierte Menge von Gut 2 erhöhen, damit der erreichte Nutzen konstant bleibt. Darum ist die Grenzrate der Substitution negativ.

Finales Substitution Nullstellen Quiz

Frage

Wie kann man die Substitution an einer ganzrationalen Funktion anwenden?

Antwort anzeigen

Antwort

Für die Substitution einer ganzrationalen Funktion benötigst du 4.Schritte:


1.Schritt:

Im ersten Schritt ersetzt du jedes xdurch ein z.


2.Schritt

Da du nun eine Gleichung mit z hast, welche du mit der Mitternachtsformel oder der p-q-Formel berechnen kannst, kannst du die sie nun nach z auflösen


3.Schritt

Nun kommst du zur Resubstitution,  bei welcher du den Parameter z wieder mit x2 tauschst.


4.Schritt

Nun musst du nur noch die Wurzel ziehen, um x zu erhalten

Frage anzeigen
60%

der Nutzer schaffen das Substitution Nullstellen Quiz nicht! Kannst du es schaffen?

Quiz starten

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Melde dich an für Notizen & Bearbeitung. 100% for free.