StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
Americas
Europe
Möchtest Du wissen, was das Assoziativgesetz in Mathe einfach erklärt ist? In dieser Erklärung erfährst Du, was das Assoziativgesetz der Multiplikation und Addition ist und kannst das Rechengesetz anhand von Beispielen nachvollziehen.Das Assoziativgesetz (auch Verknüpfungsgesetz oder Verbindungsgesetz) in Mathe besagt, dass sich bei der Addition oder Multiplikation von drei oder mehr Zahlen \(a,\,b,\,c\,\in\mathbb{R}\) beliebig Klammern setzen lassen, ohne damit das Ergebnis der Rechnung zu verändern.Sowohl die Addition als…
Entdecke über 200 Millionen kostenlose Materialien in unserer App
Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenMöchtest Du wissen, was das Assoziativgesetz in Mathe einfach erklärt ist? In dieser Erklärung erfährst Du, was das Assoziativgesetz der Multiplikation und Addition ist und kannst das Rechengesetz anhand von Beispielen nachvollziehen.
Das Assoziativgesetz (auch Verknüpfungsgesetz oder Verbindungsgesetz) in Mathe besagt, dass sich bei der Addition oder Multiplikation von drei oder mehr Zahlen \(a,\,b,\,c\,\in\mathbb{R}\) beliebig Klammern setzen lassen, ohne damit das Ergebnis der Rechnung zu verändern.
Sowohl die Addition als auch die Multiplikation sind assoziative Rechenoperationen, bei denen Du an beliebigen Stellen Klammern um Zahlen setzen kannst, um vorteilhaft zu rechnen.
Das Assoziativgesetz der Multiplikation besagt, dass bei dem Produkt aus den Zahlen \(a,\,b,\,c\,\in\mathbb{R}\) beliebig Klammern gesetzt oder weggelassen werden können.
\[a\cdot b\cdot c=a\cdot (b\cdot c)=(a\cdot b)\cdot c\]
Das Assoziativgesetz der Addition besagt, dass bei der Summe aus den Zahlen \(a,\,b,\,c\,\in\mathbb{R}\) beliebig Klammern gesetzt oder weggelassen werden können.
\[a+b+ c=a+ (b+ c)=(a+ b)+ c\]
Das Assoziativgesetz gilt bei der Subtraktion nicht! Um trotzdem das Assoziativgesetz anwenden zu können, musst Du Deine Differenz zuerst in eine Summe umwandeln. \[\underbrace{5-3-8}_{Differenz} = \underbrace{5+(-3)+(-8)}_{Summe} = 5 + \left[(-3)+(-8)\right] = 5+(-3-8)\]
Das Assoziativgesetz gilt bei der Division nicht! Um dennoch das Assoziativgesetz bei der Division anwenden zu können, musst Du vorher alle Quotienten in Faktoren eines Produkts umformen. Am einfachsten funktioniert das mit Brüchen, da jeder Quotient in einen Bruch umgeformt werden kann.
Sowohl bei reinen Summen als auch bei reinen Produkten lassen sich aufgrund des Assoziativgesetzes beliebig Klammern setzen.
Berechne das Produkt \(5\cdot 0{,}3 \cdot 10\) vorteilhaft durch Anwendung des Assoziativgesetzes.
Lösung
Das Assoziativgesetz der Multiplikation erlaubt es Dir, beliebig Klammern zu setzen. Dadurch ergibt sich:
\[5\cdot 0{,}3\cdot 10=5\cdot {\color{#00DCB4}(}0{,}3\cdot 10{\color{#00DCB4})}=5\cdot {\color{#00DCB4}3}=15\]
Berechne die Summe \(6{,}2+3{,8}+4\) vorteilhaft durch Anwendung des Assoziativgesetzes.
Lösung
Das Assoziativgesetz der Addition erlaubt es Dir, beliebig Klammern zu setzen. Dadurch ergibt sich:
\[6{,}2+3{,}8+4={\color{#00DCB4}(}6{,}2+3{,}8{\color{#00DCB4})}+4={\color{#00DCB4}10}+4=14\]
Aus einer Differenz kannst Du eine Summe machen, indem Du das negative Vorzeichen einer Zahl „mitziehst“. So wird beispielsweise aus \(-2\) der Ausdruck \({\color{#FA3273}+}(-2)\).
Berechne die Differenz \(8-3-1\) durch Umwandlung in eine Summe und wende das Assoziativgesetz an.
Lösung
Zunächst werden die negativen Zahlen mithilfe der Vorzeichen in Summen umgeschrieben.
\[8{\color{#FA3273}\,+\,}(-3){\color{#FA3273}\,+\,}(-1)\]
Jetzt können die Klammern wieder beliebig gesetzt werden, was die folgenden Berechnungen zeigen.
\begin{align}&=8{\color{#FA3273}\,+\,}(-3){\color{#FA3273}\,+\,}(-1)={\color{#00DCB4}(}8+(-3){\color{#00DCB4})}-1={\color{#00DCB4}5}-1=4\\[0.2cm]&=8{\color{#FA3273}\,+\,}(-3){\color{#FA3273}\,+\,}(-1)=8+{\color{#1478C8}(}(-3)+(-1){\color{#1478C8})}=8+{\color{#1478C8}(-4)}=4\end{align}
Weitere Übungsaufgaben zum Assoziativgesetz findest Du in den zugehörigen Karteikarten!
Für alle Zahlen a, b und c gilt:
Du darfst das Assoziativgesetz innerhalb von Summen (also beim Addieren) und innerhalb von Produkten (also beim Multiplizieren) anwenden. Beim Subtrahieren und Dividieren gilt es jedoch nicht. Wenn du hier Klammern beliebig setzt oder weglässt, verändert sich das Ergebnis der Rechnung.
Das Assoziativgesetz erlaubt dir, in Summen und Produkten Klammern zu setzen oder sie wegzulassen. Dadurch kannst du dir Rechenvorteile verschaffen. Zwei Beispiele hierfür sind:
Das Assoziativgesetz wendet man beim Addieren oder Multiplizieren an, wenn man durch das Setzen von Klammern oder durch das Weglassen von Klammern Rechenvorteile bekommt, sich also die Rechnung dadurch vereinfacht. Durch das Anwenden des Assoziativgesetzes kannst du also häufig auf den Taschenrechner verzichten und kompliziert aussehende Rechenaufgaben im Kopf lösen.
Wie möchtest du den Inhalt lernen?
94% der StudySmarter Nutzer erzielen bessere Noten.
Jetzt anmelden94% der StudySmarter Nutzer erzielen bessere Noten.
Jetzt anmeldenWie möchtest du den Inhalt lernen?
Kostenloser mathe Spickzettel
Alles was du zu . wissen musst. Perfekt zusammengefasst, sodass du es dir leicht merken kannst!
Sei rechtzeitig vorbereitet für deine Prüfungen.
Teste dein Wissen mit spielerischen Quizzes.
Erstelle und finde Karteikarten in Rekordzeit.
Erstelle die schönsten Notizen schneller als je zuvor.
Hab all deine Lermaterialien an einem Ort.
Lade unzählige Dokumente hoch und habe sie immer dabei.
Kenne deine Schwächen und Stärken.
Ziele Setze dir individuelle Ziele und sammle Punkte.
Nie wieder prokrastinieren mit unseren Lernerinnerungen.
Sammle Punkte und erreiche neue Levels beim Lernen.
Lass dir Karteikarten automatisch erstellen.
Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.
Melde dich an für Notizen & Bearbeitung. 100% for free.