• :00Tage
  • :00Std
  • :00Min
  • 00Sek
Ein neues Zeitalter des Lernens steht bevorKostenlos anmelden
Login Anmelden

Select your language

Suggested languages for you:
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Terme berechnen

Stell Dir vor, Du sitzt im Matheunterricht und bekommst eine Sachaufgabe gestellt. Kannst Du diese Aufgabe trotzdem mit dem Taschenrechner lösen? Tatsächlich kannst Du das – mit der Hilfe von Termen! Wie Du diese berechnest und was Du dabei beachten solltest, findest Du hier.Doch was genau ist ein Term?Ein Term ist ein mathematischer Rechenausdruck, der aus Zahlen, Variablen und Rechenzeichen…

Von Expert*innen geprüfte Inhalte
Kostenlose StudySmarter App mit über 20 Millionen Studierenden
Mockup Schule

Entdecke über 200 Millionen kostenlose Materialien in unserer App

Terme berechnen

Terme berechnen
Illustration

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmelden

Nie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmelden
Illustration

Stell Dir vor, Du sitzt im Matheunterricht und bekommst eine Sachaufgabe gestellt. Kannst Du diese Aufgabe trotzdem mit dem Taschenrechner lösen? Tatsächlich kannst Du das – mit der Hilfe von Termen! Wie Du diese berechnest und was Du dabei beachten solltest, findest Du hier.

Terme berechnen – Erklärung

Doch was genau ist ein Term?

Ein Term ist ein mathematischer Rechenausdruck, der aus Zahlen, Variablen und Rechenzeichen bestehen kann. Relationszeichen, wie =, <, > dürfen darin nicht vorkommen. Ein Term kann aus einer einzelnen Zahl oder Variable bestehen.

Nicht zu verwechseln sind Terme mit Gleichungen. Eine Gleichung besteht aus zwei Termen, die mit einem Gleichheitszeichen verbunden sind!

Für Dich als Vergleich:

Gleichung
5
5=5
5+2
5+2=7
5·x
5·x=10
2·x+3
2·x+3=x+8
4x+9y
4x+9y=17

Bevor Du lernst, Terme zu berechnen, solltest Du Dich auch mit den vier Grundrechenarten auskennen. Wenn das nicht der Fall ist, schau Dir doch gerne nochmal den Artikel zu den Grundrechenarten an.

Als kurze Erinnerung:

Zu den vier Grundrechenarten gehören

Wenn Du mehr über diese Themen wissen möchtest, kannst Du Dir folgende Artikel anschauen: Addition, Subtraktion, Dividieren, Multiplizieren

Terme berechnen – Grundlagenwissen

Einen Term kannst Du zum Beispiel beim Berechnen einer Sachaufgabe aufstellen. Dabei übersetzt Du den gegebenen Text in Zahlen, Variablen und Rechenzeichen. Jede Sachaufgabe ist anders, doch das Aufstellen von Termen folgt immer den gleichen Regeln und Abläufen. Falls Du Dich mit der Aufstellung von Termen vorher auf einer tieferen Ebene beschäftigen möchtest, kannst Du Dir den Artikel Terme aufstellen ansehen.

Terme aufstellen: Schritt für Schritt

Kurz zusammengefasst: Was muss ich machen, wenn ich eine Sachaufgabe gestellt bekomme und lösen möchte?

  1. Text gründlich, am besten mehrmals, durchlesen

  2. Informationen rausschreiben

  3. Informationen in Zahlen, Variablen und Rechenzeichen darstellen

  4. Aufgestellten Term lösen, dabei die Reihenfolge der Rechenoperatoren beachten

Mehr zum Thema Terme aufstellen findest du in dem dazugehörigen Artikel. Schaue da gerne vorbei, wenn Du Dir das Thema genauer ansehen möchtest.

Terme ohne Klammern berechnen

Nachdem Du Deinen Term aufgestellt hast, wirst Du häufig auch den Term berechnen müssen. Ähnlich wie bei der Aufstellung des Terms kannst Du dabei immer die gleiche Vorgehensweise anwenden. In einigen Schritten werden Techniken aus dem Thema Termumformungen und Terme vereinfachen genutzt. Wenn Du nicht weißt, wie Du diese anwendest, schaue doch gerne dort mal vorbei.

Hier einmal, wie Du Schritt für Schritt vorgehst:

Im Folgenden siehst Du Schritt für Schritt, wie Du einen Term berechnen kannst:

  1. Ordne Deinen Term so um, dass Du die Rechenschritte voneinander abgrenzen kannst.
  2. Löse die Klammern auf, von der innersten zur äußersten.
  3. Multipliziere die Potenzen aus
  4. Führe die Punktrechnungen durch.
  5. Führe die Strichrechnungen durch.
  6. Überprüfe nochmal Deine Rechenschritte.

Wie Du das in einer Aufgabe anwendest, kannst Du im folgenden Beispiel sehen.

Aufgabe 1

Berechne folgenden Term:

7·22-2-22·32+7-2·52÷2+12·32-6

Lösung

Gehe jetzt Schritt für Schritt vor.

1. Term umordnen:

Hier stellst Du jeweils alle Multiplikationen und Additionen zusammen.

7·22-2-22·32+7-2·52÷2+12·32-6=7·22-22·32-2·52÷2+12·32-2+7-6

Hier ist wichtig, dass Du bei der Umstellung von Subtraktionen nicht den Wert der Aufgabe veränderst. Das könnte passieren, wenn Du die Reihenfolge einer Subtraktion änderst. Da in der Subtraktion das Kommutativgesetz nicht gilt, würde ein anderes Ergebnis rauskommen.

2. Terme mit Klammern kommen gleich, hier handelt es sich erst noch um das Grundlegendste.

3. Potenzrechnung:

7·22-22·32-2·52÷2+12·32-2+7-6=7·4-4·9-2·25÷2+12·9-2+7-6

Jetzt kannst Du die Multiplikation durchführen.

4. Punktrechnung:

=7·4=28-4·9=36-2·25=25÷2+12·9=108-2+7-6=28-36-25+108-2+7-6

Du hast hier nur noch Addition und Subtraktion übrig, also ist der nächste Schritt der letzte.

4. Strichrechnung:

28-36-25+108-2+7-6=74

Das Ergebnis für Deinen Term ist also 74.

Bei eigenen Rechnungen solltest Du nochmal über Deine Rechnung gehen und sichergehen, dass die keine Flüchtigkeitsfehler unterlaufen sind.

Terme mit Klammern berechnen

Um Terme mit Klammern zu berechnen, solltest Du zumindest ein wenig Erfahrung im Umgang mit Klammern haben, wenn nicht, schau Dir doch den Artikel zur Klammerrechnung an.

Im Folgenden kannst Du die Berechnung anhand eines Beispiels lernen.

Aufgabe 2

Berechne folgenden Term:

2·5+7-13

Lösung

1. Schritt

Du löst zuerst die innerste Klammer auf:

2·5+7-13=2·12-13

2. Schritt

Und jetzt noch die äußere:

2·12-13=24-13=11

Nach diesem Schema kannst Du bei beliebig vielen Klammern vorgehen. Nachdem Du die Klammern gelöst hast, rechnest Du dann erst mit den Potenzen, dann der Punktrechnung und der Strichrechnung weiter.

Terme mit einer Variablen aufstellen und Werte berechnen

Um diesen Abschnitt zu verstehen, solltest Du Dich auch mit Variablen und deren Berechnung auskennen. Sollte das nicht der Fall sein, schau Dir doch gerne nochmal den Artikel zu den Variablen an.

Als kurze Erinnerung:

Eine Variable ist ein Buchstabe oder ein Symbol, das als eine Leerstelle für eine Zahl dient. Sie ermöglicht es, Zusammenhänge für eine Berechnung allgemein darzustellen.

Häufig werden als Variablen x, y oder a, bverwendet, es steht Dir letzten Endes aber frei welche Du verwendest.

Terme mit einer Variable aufstellen

Ein Term mit einer Variable unterscheidet sich nicht groß von den Termen, die Du oben gesehen hast. Die Variable wird genutzt, um eine Zahl, die Dir unbekannt ist, bzw. variiert – deswegen auch Variable – zu umschreiben. Es können auch mehrere verschiedene Variablen in einem Term vorkommen.

Aufgabe 3

Julius würde gerne alle Fahrgeschäfte in einem Freizeitpark ausprobieren. Wie viele müsste er täglich fahren, wenn er sich die 50 Fahrgeschäfte auf verschieden viele Tage aufteilt?

Stelle einen Term auf.

Lösung

1. Schritt

Er möchte 50 Fahrgeschäfte in x Tagen fahren, das können wir auch in einem Bruch ausdrücken:

50x

Und das ist auch schon der fertige Term.

Termwert berechnen

Wenn Du den Wert eines Terms, also einen Termwert erhalten möchtest, musst Du für Deine Variable konkrete Zahlen einsetzten. Diese können entweder gegeben sein, oder Du denkst sie Dir selbst aus.

Nehme hier wieder das Beispiel mit Julius.

Aufgabe 4

Wie viele Fahrgeschäfte müsste er täglich fahren, wenn er die Fahrten auf 5 oder 10 Tage verteilt.

Lösung

Hier kannst Du den Term von Oben nehmen:

50x

Das x hattest Du bei der Aufstellung des Terms als einen Platzhalter für beliebig viele Tage verwenden. Da Du jetzt eine konkrete Anzahl an Tagen hast, musst Du diese Zahl für das x einsetzen.

50xx=5=505=10

Julius müsste 10 Fahrgeschäfte pro Tag fahren, wenn er insgesamt 5 Tage brauchen möchte.

Das kannst Du jetzt auch andersherum rechnen:

50xx=10=5010=5

Julius müsste 5 Fahrgeschäfte pro Tag fahren, wenn er insgesamt 10 Tage brauchen möchte.

Wie oben schon erwähnt, können Terme nicht nur eine, sondern auch mehrere Variablen enthalten.

Terme mit mehreren Variablen berechnen

In einem Term können nicht nur eine, sondern auch mehrere Variablen vorkommen. In diesem Fall ist es wichtig, darauf zu achten, dass die verschiedenen Variablen nicht falsch zusammengefasst werden.

Achte dabei auf folgendes:

Nur gleiche Variablen dürfen in Termen zusammengefasst werden

Zudem solltest Du auch beachten:

Beim Zusammenfassen von verschiedenen Variablen dürfen die Koeffizienten nur bei der Multiplikation zusammengefasst werden, nicht aber bei der Addition!

3y·5x=3·5·y·x=15·y·x3y+5x3+5+y+x=8+y+x !

Bedenke, dass die Variablen x und y multipliziert, also xy, wie eine Variable funktionieren. Das heißt, bei der Multiplikation darfst Du sie mit x, y oder xy zusammenfassen, bei der Addition jedoch nur mit anderen xy!

Abgesehen davon, kannst Du diese Art von Termen auf die gleiche Weise berechnen, wie zuvor auch.

Aufgabe 5

Berechne folgenden Term fürx=1 und y=3:

4x9+y-7x-y

Lösung

1. Schritt: Klammern auflösen

4x·9+y-7x-y=36x+4xy-7x-y

2. Schritt: Zusammenfassen

36x+4xy-7x-y=4xy+36x-7x-y=4xy+29x-y

3. Schritt: Werte einsetzen

4xy+29x-y=4·1·3+29·1-3=12+29-3=38

Terme berechnen mit Klammern – Aufgaben

Im Folgenden findest Du ein paar Übungsaufgaben für Dich. Rechne sie selbstständig aus und vergleiche sie danach mit den Musterlösungen.

Aufgabe 6

Berechne folgenden Term:

5-2·7-3÷9

Lösung

Als Erstes werden die Klammern ausgerechnet, beginnend mit der innersten:

5-2·7-3÷9=3·7-3÷9

In die dieser Klammer gilt jetzt die Punkt vor Strich Regel:

3·7-3÷9=21-3÷9=18÷9=2

Am Ende bleibt dann nur noch eine Division übrig, die Du berechnen musst. Damit bist Du dann auch fertig.

Aufgabe 7

Berechne den Term

x+5·2÷3-x2

für x=8

Lösung

1. Schritt:

Als Erstes berechnest Du die Multiplikation in der Klammer:

x+5·2÷3-x2=(x+10)÷3-x2

2. Schritt:

Als Nächstes setzt Du jetzt Deinen Wert für x ein:

(x+10)÷3-x2=8+10÷3-82

3. Schritt:

Jetzt kannst Du wieder Deine Klammer lösen:

=8+10÷3-82=18÷3-4

4. Schritt:

Als Nächstes kommt jetzt wieder die Punktrechnung:

=18÷3-4=6-4

5. Schritt:

Als letzter Schritt bleibt jetzt noch das Zusammenfassen der Summanden:

=6-4=2

Aufgabe 8

Gegeben ist folgendes Rechteck. Berechne den inneren (markierten) Flächeninhalt für

a=6 cm, b=8cm und c=1cm

Terme berechnen Umfang Study SmarterAbbildung 1: Darstellung Umfang

Lösung

1. Schritt:

Als Erstes stellst Du den Term auf. Die Formel für den Flächeninhalt A eines Rechteckes lautet:

A=a·b

In diesem Beispiel sind jedoch die beiden Seitenlängen nicht direkt gegeben, Du musst also jeweils erstmal einen Term für die Seitenlängen aufstellen.

Die Seitenlängen des inneren Flächeninhalts sind kürzer als die vorgegebenen Seiten a, b. In der Aufgabenstellung kannst Du sehen, dass an jeweils beiden Enden der Seitenlängen ein Abstand c zu den äußeren Seiten a, b existiert. Den musst Du also jeweils von den gegebenen Seitenlängen zweimal abziehen (auf jedem Ende einmal, also zwei pro Seitenlänge), um auf die Seitenlängen des inneren Flächeninhalts zu kommen.

Für die Seitenlängen des inneren Flächeninhaltes (in diesem Beispiel mal a' und b') gilt also:

a'=a-2cb'=b-2c

2. Schritt:

Jetzt musst Du diese beiden Terme in die allgemeine Formel des Flächeninhalts einsetzen:

A=a·b=a'·b'=(a-2c)·(b-2c)

3. Schritt:

Jetzt kannst Du den Term berechnen, dafür solltest Du damit anfangen, die Klammern miteinander zu multiplizieren:

(a-2c)·(b-2c)=ab-2ac-2bc+4c2

4. Schritt:

Da Du hier die Variablen nicht mehr zusammenfassen kannst, musst Du jetzt die Werte für Deine Variablen eingeben:

ab-2ac-2bc+4c2=6 cm·8 cm-2·6 cm·1cm-2·8 cm·1cm+4·1 cm2

5. Schritt:

Diesen Term rechnest Du jetzt aus, beginnend mit der Multiplikation:

6 cm·8 cm-2·6 cm·1cm-2·8 cm·1cm+4·1 cm2=48 cm2-12 cm2-16 cm2+4 cm2

6. Schritt:

Zum Schluss bleibt jetzt noch die Strichrechnung:

48 cm2-12 cm2-16 cm2+4 cm2=24 cm2

Da es sich hier um einen Flächeninhalt handelt, muss die Einheit in der zweiten Potenz angegeben sein. Wenn das bei Deiner Rechnung nicht der Fall ist, solltest Du Deine Rechnung noch einmal auf Fehler überprüfen.

Terme berechnen – Das Wichtigste

  • ein Term besteht aus Zahlen, Variablen und Rechenzeichen, Gleichheitszeichen sind nicht enthalten
  • Zwei mit einem Gleichheitszeichen verbundene Terme werden Gleichung genannt
  • Gleiche Variablen dürfen in Termen zusammengefasst werden
  • Bei verschiedenen Variablen dürfen die Koeffizienten nur bei der Multiplikation zusammenfasst werden, nicht bei der Addition
  • Terme werden in einer bestimmten Vorgehensweise berechnet
    1. Ordne Deinen Term so um, dass Du die Rechenschritte voneinander abgrenzen kannst
    2. Löse die Klammern auf, von der innersten zur äußersten
    3. Führe die Multiplikationen und Divisionen durch
    4. Führe die Additionen und Subtraktionen durch
    5. Überprüfe nochmal Deine Rechenschritte

Häufig gestellte Fragen zum Thema Terme berechnen

Terme mit Klammern berechnest Du, indem Du damit beginnst, den Inhalt der Klammern, von der innersten zur äußersten zu berechnen. Anschließend kannst Du den restlichen Term ausrechnen.

Eine Variable dient als Platzhalter für einen veränderbaren Wert. Schreibe daher ein beliebiges Zeichen an die Stelle, an der du einen veränderbaren Wert benötigst.

Terme kannst Du zusammenfassen, indem Du gleichartige Variablen ausklammerst, bzw. zusammenfasst. Verschiedene Variablen dürfen nur bei der Multiplikation zusammengefasst werden.

Lese den gegebenen Text gründlich durch und schreibe die wichtigsten Eckdaten raus. Anschließend übersetzt du den Text in Zahlen, Variablen und Rechenzeichen. 

Finales Terme berechnen Quiz

Terme berechnen Quiz - Teste dein Wissen

Frage

Woraus besteht ein Term?

Antwort anzeigen

Antwort

Ein Term besteht aus Zahlen, Variablen und Rechenzeichen, aber enthält keine Relationszeichen.

Frage anzeigen

Frage

Nenne die Reihenfolge bei der Berechnung von Termen.

Antwort anzeigen

Antwort

1. Term Umordnen

2. Klammern auflösen

3. Potenzen

4. Multiplikation und Division

5. Addition uns Subtraktion

6. Rechenschritte überprüfen

Frage anzeigen

Frage

Wie berechnest Du einen Termwert?

Antwort anzeigen

Antwort

1. Wert für Variable einsetzten

2. Term ausrechnen

Frage anzeigen

Frage

Was musst Du beim Zusammenfassen von verschiedenen Variablen beachten?

Antwort anzeigen

Antwort

Beim Zusammenfassen von verschiedene Variablen werden die Koeffizienten immer miteinander addiert

Frage anzeigen

Frage

Erläutere den Begriff Variable.

Antwort anzeigen

Antwort

Eine Variable ist ein Buchstabe oder ein Symbol, die als eine Leerstelle für eine Zahl dient.

Frage anzeigen

Frage

Benenne den Zeitpunkt, zu dem die Potenzen berechnet werden.

Antwort anzeigen

Antwort

Beim Ausmultiplizieren des Terms.

Frage anzeigen

Frage

Nenne die vier Grundrechenarten

Antwort anzeigen

Antwort

Die vier Grundrechenarten sind Addition, Subtraktion, Multiplikation und Division

Frage anzeigen

Frage

Ist die Variable

x

ein Term?

Antwort anzeigen

Antwort

Ja

Frage anzeigen

Frage

Wie nennst Du zwei Terme, die mit einem Gleichheitszeichen verbunden sind?

Antwort anzeigen

Antwort

Zwei Terme, die mit einem Gleichheitszeichen verbunden sind, heißen Gleichungen.

Frage anzeigen

Frage

Was musst Du beim Umordnen eines Terms, insbesondere bei Subtraktionen, beachten?

Antwort anzeigen

Antwort

Du musst darauf achten, dass Du bei der Umstellung von Subtraktionen nicht den Wert der Aufgabe veränderst.

Frage anzeigen

Frage

Warum solltest Du nach dem Berechnen des Terms nochmal über Deinen Rechenweg gehen?

Antwort anzeigen

Antwort

Es könnten sich Flüchtigkeitsfehler eingeschlichen haben.

Frage anzeigen

Mehr zum Thema Terme berechnen
60%

der Nutzer schaffen das Terme berechnen Quiz nicht! Kannst du es schaffen?

Quiz starten

Wie möchtest du den Inhalt lernen?

Karteikarten erstellen
Inhalte meiner Freund:innen lernen
Ein Quiz machen

94% der StudySmarter Nutzer erzielen bessere Noten.

Jetzt anmelden

94% der StudySmarter Nutzer erzielen bessere Noten.

Jetzt anmelden

Wie möchtest du den Inhalt lernen?

Karteikarten erstellen
Inhalte meiner Freund:innen lernen
Ein Quiz machen

Kostenloser mathe Spickzettel

Alles was du zu . wissen musst. Perfekt zusammengefasst, sodass du es dir leicht merken kannst!

Jetzt anmelden

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Melde dich an für Notizen & Bearbeitung. 100% for free.

Fang an mit StudySmarter zu lernen, die einzige Lernapp, die du brauchst.

Jetzt kostenlos anmelden
Illustration