Select your language

Suggested languages for you:
Log In Anmelden
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Die All-in-one Lernapp:

  • Karteikarten
  • NotizenNotes
  • ErklärungenExplanations
  • Lernpläne
  • Übungen
App nutzen

Grundgleichung der Prozentrechnung

Save Speichern
Print Drucken
Edit Bearbeiten
Melde dich an und nutze alle Funktionen. Jetzt anmelden
Grundgleichung der Prozentrechnung

Die Prozentrechnung begegnet dir im Alltag überall. Beim Shoppen kannst du 25% sparen auf einen Einkaufswert von 150 €. Doch wie viele Euro sind das? Im Stadion werden die Zuschauerzahlen, 41.000 von 50.000 möglichen Zuschauern, durchgesagt. Wie viel Prozent der Sitze im Stadion sind belegt? Deine Smartwatch sagt dir, du hast mit deinen bisherigen 6.000 Schritten 75% des Schrittziels erreicht. Du fragst dich, welches Schrittziel du überhaupt eingestellt hast.

Um diese Dinge ganz einfach und schnell auszurechnen, benötigst du die Grundgleichung der Prozentrechnung.

Grundgleichung der Prozentrechnung Prozentrechnung StudySmarter

Grundgleichung der Prozentrechnung Prozent Definition

Lies dir zu diesem Thema am besten auch noch den Artikel Prozent genauer durch, falls du dich noch nicht sicher fühlst.

Ein Prozent ist also festgelegt als:

Grundgleichung der Prozentrechnung Prozent StudySmarter

Eine Prozentangabe kann man also als Bruch schreiben (zum Beispiel als Anteil von Hundert), aber auch als Dezimalzahl oder mithilfe des Prozentzeichens als Prozentsatz.

Anhand des Beispiels erklären wir dir, wie man die Prozentangabe ausdrücken kann und wie sie in einen Prozentsatz umgewandelt werden kann.

Aufgabe 1

Es liegen 100 Buntstifte herum, davon sind 20 rot.

Es sind also 20 von 100 Stiften rot. Das kannst du als Bruch schreiben:

Zwanzig Hundertstel lassen sich aber auch als Dezimalzahl schreiben:

Oft drückst du bei Rechnungen deine Anteile erst durch einen Bruch oder eine Dezimalzahl aus. Wichtig ist es jetzt, diese in eine Prozentangabe umwandeln zu können.

1. Ein Anteil von Hundert kann immer direkt als Prozentsatz geschrieben werden. Wichtig ist, dass wirklich 100 im Nenner steht. Das kannst du aber natürlich auch durch das Erweitern und Kürzen erreichen.

20100=20%

2. Bei den Dezimalzahlen wird das Komma um zwei Positionen nach rechts verschoben und das Prozentzeichen hinter die neue Zahl gesetzt.

0,200=20,0%

Prozentangaben sind sehr wichtig:

  • Sie dienen der Darstellung von Anteilen und Größenverhältnissen.

  • Außerdem ermöglichen sie einen Vergleich verschiedener Größenangaben

Um mit ihnen rechnen zu können, benötigt man jedoch die Grundgleichung der Prozentrechnung.

Grundgleichung der Prozentrechnung – Formeln und Begriffe

Im Folgenden definieren wir die Begriffe, welche bei der Grundgleichung der Prozentrechnung eine Rolle spielen. Danach lernst du direkt, wie man die verschiedenen Werte berechnet und wie sie im Zusammenhang miteinander stehen.

Achtung: Die Benennung von Grundwert als G, Prozentwert als P und Prozentsatz als p%, ist nicht in allen Lehrbüchern gleich!

Grundwert G

Schau dir zuerst den einfachsten aller Begriffe in der Prozentrechnung an!

Der Grundwert G ist immer das Gesamte, er entspricht 100 %.

Am Beispiel dieser Pizza wären es die gesamten 8 Stücke Pizza.

Grundgleichung der Prozentrechnung / Grundwert / StudySmarter

Prozentwert P

Die nächste wichtige Größe ist der Prozentwert!

Der Prozentwert P ist der absolute Anteil am Gesamten.

Bei dieser Pizza wäre es zum Beispiel, das eine herausgenommene Pizzastück.

Grundgleichung der Prozentrechnung Formel / Prozentwert/  StudySmarter

Prozentsatz p%

Der Prozentsatz entspricht dem Verhältnis vom gesuchten Anteil zum Gesamten und wird mithilfe des Prozentzeichens (%) beschrieben.

Aufgabe 2

Bei der Pizza ergibt sich das Verhältnis von 18, der Prozentsatz beträgt also 12,5 %.

Rechnung:

18=·12,512,5100=12,5%

Grundgleichung der Prozentrechnung Formel/ Prozentsatz / StudySmarter

Oft musst du Grundwert, Prozentwert oder Prozentsatz, berechnen.

Dazu kannst du entweder den Dreisatz oder die Grundgleichung der Prozentrechnung verwenden. Letzteres wird im Folgenden genauer erklärt.

Berechnung der Werte – Prozentrechnung

Die Grundgleichung der Prozentrechnung liefert dir eine Möglichkeit, durch Einsetzen der zwei gegebenen Werte den gesuchten Wert zu erhalten.

Die Grundgleichung der Prozentrechnung dient zur Berechnung von Grundwert (G), Prozentwert (P) oder Prozentsatz (p%).

Die Gleichung ist immer die gleiche, sie wird nur nach dem gesuchten Wert umgestellt.

Berechnung des Prozentsatzes p%:

p%=PG

Berechnung des Prozentwertes P:

P=p%·G

Berechnung des Grundwertes G:

G=Pp%

Wenn zwei Werte gegeben sind, kann der dritte Wert berechnet werden.

Um dir besser merken zu können, wie die Formel bei welchem Wert aussieht, gibt es das Dreieck der Prozentrechnung als Merkhilfe.

Grundgleichung der Prozentrechnung / Formel Grundwert / Prozentwert / Prozentsatz / StudySmarter

Abbildung 1: Dreieck der Prozentrechnung

Merke dir am besten: Der größte in der Familie ist Papa (großes P), er steht an der Spitze.

Jetzt musst du nur noch den gesuchten Wert umkreisen. Alles, was übrig bleibt, ergibt genau deine gesuchte Formel.

Die Gleichungen für die jeweiligen Werte solltest du jetzt also aufstellen können.

Prozentsatz berechnen

Grundgleichung der Prozentrechnung / Formel Grundwert / Prozentwert / Prozentsatz / StudySmarterAbbildung 2: Formal Prozentsatz

Du willst die Gleichung zum Prozentsatz wissen und umkreist deshalb das p%. Übrig bleibt nur noch ein P, ein Bruchstrich dazwischen und im Nenner ein G, genauso wie es im Dreieck noch zu sehen ist.

p%=PG

In diese Formel musst du nur noch den gegebenen Prozentwert P und Grundwert G einsetzen.

Aufgabe 3

Im Stadion werden die Zuschauerzahlen, 41.000 von 50.000 möglichen Zuschauern, durchgesagt. Wie viel Prozent der Sitze im Stadion sind belegt?

Lösung

Der Grundwert G sind 50.000, da das die Gesamtanzahl an Sitzplätzen im Stadion ist.

41.000 ist der Prozentwert, das ist die absolute Anzahl an belegten Sitzplätzen.

p%=4100050000=0,82=82%

Es sind also 82 % der Sitzplätze des Stadions belegt.

Prozentwert berechnen

Grundgleichung der Prozentrechnung / Formel Grundwert / Prozentwert / Prozentsatz / StudySmarter

Abbildung 3: Formel Prozentwert

Diesmal umkreist du den Prozentwert P. Unten bleibt das Produkt aus p% und G stehen, deshalb lautet die Gleichung für den Prozentwert:

P=p%·G

Um den Prozentwert zu erhalten, multiplizierst du den gegebenen Prozentsatz und Grundwert.

Aufgabe 4

Beim Shoppen kannst du 25 % auf einen Einkaufswert von 150 € sparen. Doch wie viele Euro sind das?

Lösung

Der Prozentsatz ist einfach zu erkennen, er beträgt 25 %.

150 € ist der gesamte Einkaufswert und damit der Grundwert.

P=25%·150=37,50

Man spart also 37,50 € auf seinen Einkauf.

Grundwert berechnen

Grundgleichung der Prozentrechnung / Formel Grundwert / Prozentwert / Prozentsatz / StudySmarter

Abbildung 4: Formel Grundwert

Du nutzt das gleiche Vorgehen wie beim Prozentsatz, um auf die Gleichung für den Grundwert G zu kommen.

G=Pp%

Wenn du den Prozentwert durch den Prozentsatz dividierst, erhältst du den gesuchten Grundwert.

Aufgabe 5

Deine Smartwatch sagt dir, du hast mit deinen bisherigen 6.000 Schritten 75 % des Schrittziels erreicht. Du fragst dich, welches Schrittziel du überhaupt eingestellt hast.

Lösung

Du möchtest die Gesamtschrittzahl wissen. 6000 Schritte bist du schon gelaufen, dieser absolute Anteil ist der Prozentwert. Immerhin dreiviertel (75 %) deiner Schritte hast du damit heute schon gemacht, das sagt dir der Prozentsatz.

G=600075%=60000,75=8000

Deine Smartwatch hat also ein eingestelltes Schrittziel von 8.000 Schritten.

Berechnung mithilfe des Dreisatzes

Statt der Grundgleichung der Prozentrechnung kannst du auch einfach den Dreisatz verwenden.

Er nutzt die direkte Proportionalität der Prozentrechnung, um den gesuchten Wert zu ermitteln.

Beim Dreisatz gehst du folgendermaßen vor:

  1. Du setzt deine gegebene Größe mit ihrem Prozentsatz gleich.
  2. Du rechnest den Prozentwert für den Prozentsatz 1% aus, indem du auf beiden Seiten die gleiche Rechnung (Multiplikation oder Division) vornimmst.
  3. Als Letztes multiplizierst du die 1%, damit letztlich der gesuchte Prozentsatz, Prozentwert oder Grundwert herauskommt.

Aufgabe 6: Prozentwert gesucht.

Wie viel sind 20 % von 120 €?

Lösung

100%=120:100 1%=1,20 :100·20 20%=24 ·20

Antwort: 30 % von 120 € sind 24 €.

Aufgabe 7: Grundwert gesucht.

Im Supermarkt ist eine Ware um 40 % reduziert und kostet jetzt 12 €. Wie viel hat sie vorher gekostet?

Lösung

60%=12:60 1%=0,20 :60·100 100%=20 ·100

Antwort: Die Ware hat vorher 20 € gekostet.

Aufgabe 8: Prozentsatz gesucht.

120 von 300 Personen im Lesesaal sind Mädchen. Wie viel Prozent der Anwesenden sind weiblich?

Lösung

100%=300:100 1%=3 :100·40 40%=120 ·40

Antwort: Es sind 40 % der Anwesenden weiblich.

Grundgleichung der Zinsrechnung (Prozentrechnung)

Mithilfe der Zinsrechnung kannst du berechnen, wie viel Geld dein Erspartes auf der Bank einbringt oder welche Summe du bei einer Ratenzahlung draufzahlen musst.

Auch die Zinsrechnung basiert auf der Grundgleichung der Prozentrechnung. Hier werden Prozentsatz, Prozentwert und Grundwert nur anders benannt:

Prozentrechnung Zinsrechnung
Prozentsatz p%
Zinssatz z%
Prozentwert PZinsen Z
Grundwert GKapital K

Die Grundgleichung der Zinsrechnung sieht also so aus:

Die Formeln zur Berechnung der verschiedenen Werte in der Zinsrechnung sind:

Zinssatz p%:

p%=ZK

Zinsen Z:

Z=p%·K

Kapital K:

K=Zp%

Wenn du die Prozentrechnung beherrschst, sollte dir also auch die Zinsrechnung leicht fallen.

Sieh dir zu diesem Thema am besten noch mal den Artikel zur Zinsrechnung an.

Grundgleichung der Prozentrechnung Übungen

Aufgabe 9

Von 25 Schüler*innen einer Klasse haben 16 braune Augen. Welcher Prozentsatz ist das?

Lösung

GrundwertG=25

Prozentwert P=16

p% = PGp% = 1625 =4 64100=64%

Die Formel zum Prozentsatz solltest du auswendig können oder dir mithilfe des Dreiecks herleiten können. In diese setzt du Prozentwert und Grundwert ein. Erweiterst du diesen Bruch, damit im Nenner eine 100 steht, bekommst du deinen gesuchten Prozentsatz.

Aufgabe 10

Ein Download von insgesamt 200 GB am Computer bleibt bei 60 % stehen. Wie viel wurde schon heruntergeladen?

Lösung:

Prozentsatz p%=60%

Grundwert G=200 GB

P= p%·GP= 60%·200 = 0,60·200 = 120 GB

Schreibe dir die richtige Formel auf. Um jetzt den Prozentwert zu berechnen, multiplizierst du 60 % mit den 200 GB.

Aufgabe 11:

Du kaufst im Möbelladen einen Schrank mithilfe eines 20 %-Gutscheins, mit dem du 100 € sparen konntest. Wie teuer war der Schrank?

Lösung:

Prozentsatz p%=20%

Prozentwert P=100

G = Pp%G = 10020% = 1000,20 = 500

Der Prozentwert von 100 € geteilt durch den Prozentsatz von 20 %, ergeben einen Grundwert von 500 €.

Grundgleichung der Prozentrechnung Das Wichtigste

  • Die Grundgleichung der Prozentrechnung dient der Berechnung von Grundwert (G), Prozentwert (P) oder Prozentsatz (p%).

    Die Gleichung ist immer die gleiche, sie wird nur nach dem gesuchten Wert umgestellt.

  • Grundwert G = das Gesamte, entspricht 100%.
  • Berechnung des Grundwertes G: G=Pp%
  • Prozentwert P = der absolute Anteil am Gesamten
  • Berechnung des Prozentwertes P: P= G·p%
  • Prozentsatz p% = das Verhältnis des Anteils zum Gesamten, mithilfe des Prozentzeichens (%) beschrieben
  • Berechnung des Prozentsatzes p%: p%=PG
  • Du kannst dir die Gleichungen mithilfe des Dreiecks zur Prozentrechnung merken.
  • Alternativ kannst du eine Prozentrechnung auch mit dem Dreisatz durchführen.
  • Die Zinsrechnung basiert auf der Grundgleichung der Prozentrechnung. Die Grundbegriffe sind nur anders benannt: Prozentsatz wird zum Zinssatz, Prozentwert wird zu den Zinsen und der Grundwert wird zum Kapital.

Häufig gestellte Fragen zum Thema Grundgleichung der Prozentrechnung

Den Prozentsatz (dargestellt mit dem Prozentzeichen %) berechnet man mithilfe der Formel p%= P/G.

Der Prozentwert P ist dabei der absolute Anteil und wird ins Verhältnis zum Grundwert G gesetzt, dem Gesamten.

Am einfachsten und schnellsten funktioniert die Prozentrechnung mit der Grundgleichung der Prozentrechnung. Dabei hast du eine vorgegebene Formel, in die du nur noch die gegebenen Werte einsetzen musst.

Bei der Prozentrechnung wendest du den Dreisatz an, indem du zuerst den Prozentwert berechnest, der 1 % entspricht. Dann multiplizierst du die 1 % und den Prozentsatz mit dem gesuchten Wert für den Prozentsatz beziehungsweise den Prozentwert.

Die Formeln für die Zinsrechnung leiten sich aus den Grundgleichungen der Prozentrechnung ab, sie haben allerdings andere Bezeichnungen.

Kapital K = Zinsen Z / Zinssatz p%

Zinsen Z = K · p%

Zinssatz p% = Z / K

Finales Grundgleichung der Prozentrechnung Quiz

Frage

Erläutere die Wichtigkeit von Prozentangaben.

Antwort anzeigen

Antwort

Prozentangaben sind sehr wichtig:

  • Sie dienen der Darstellung von Anteilen und Größenverhältnissen.
  • Außerdem ermöglichen sie einen Vergleich verschiedener Größenangaben
Frage anzeigen

Frage

Definiere den Begriff Grundwert.

Antwort anzeigen

Antwort

Der Grundwert ist immer das Gesamte, er entspricht 100%.

Frage anzeigen

Frage

Definiere den Begriff Prozentwert.

Antwort anzeigen

Antwort

Der Prozentwert ist der absolute Anteil am Gesamten.

Frage anzeigen

Frage

Definiere den Begriff Prozentsatz.

Antwort anzeigen

Antwort

Der Prozentsatz entspricht dem Verhältnis von gesuchtem Anteil zum Gesamten und wird mithilfe des Prozentzeichens (%) beschrieben.

Frage anzeigen

Frage

Welche Begriffe werden in der Zinsrechnung stellvertretend zu den Begriffen der Prozentrechnung verwendet?

Antwort anzeigen

Antwort

Prozentsatz = Zinswert

Frage anzeigen

Frage

Kann der Dreisatz zur Berechnung des Prozentsatzes genutzt werden?

Antwort anzeigen

Antwort

Ja

Frage anzeigen

Frage

Beschreibe den Prozentsatz p% in eigenen Worten!

Antwort anzeigen

Antwort

Eine beispielhafte Antwort könnte sein: Der Prozentsatz gibt das Verhältnis wieder in der sich der Grundwert und der Prozentwert miteinander befinden. 

Frage anzeigen

Frage

Beschreibe den Prozentwert P in eigenen Worten!

Antwort anzeigen

Antwort

Der Prozentwert P ist der absolute Anteil am Gesamten. 

Frage anzeigen

Frage

Kann der Dreisatz zur Berechnung des Prozentwerts genutzt werden?

Antwort anzeigen

Antwort

Ja

Frage anzeigen

Frage

Wofür steht das P in der Formel der Grundgleichung der Prozentrechnung?

Antwort anzeigen

Antwort

Das P steht für den Prozentwert.

Frage anzeigen

Frage

Beschreibe den Grundwert G in eigenen Worten!

Antwort anzeigen

Antwort

Den Grundwert kannst du dir als Ausgangspunkt von etwas vorstellen, mit dem du Berechnungen anstellen kannst. 

Frage anzeigen

Frage

Kann der Dreisatz zur Berechnung des Grundwerts genutzt werden?

Antwort anzeigen

Antwort

Ja

Frage anzeigen

Frage

Wofür steht das G in der Formel der Grundgleichung der Prozentrechnung?

Antwort anzeigen

Antwort

Das G steht für den Grundwert.

Frage anzeigen
Mehr zum Thema Grundgleichung der Prozentrechnung
60%

der Nutzer schaffen das Grundgleichung der Prozentrechnung Quiz nicht! Kannst du es schaffen?

Quiz starten

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Melde dich an für Notizen & Bearbeitung. 100% for free.