Select your language

Suggested languages for you:
Log In Anmelden
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Die All-in-one Lernapp:

  • Karteikarten
  • NotizenNotes
  • ErklärungenExplanations
  • Lernpläne
  • Übungen
App nutzen

Brüche subtrahieren

Save Speichern
Print Drucken
Edit Bearbeiten
Melde dich an und nutze alle Funktionen. Jetzt anmelden
Brüche subtrahieren

Schaue Dir die Abbildung 1 unten an. Was denkst Du, was der Flächeninhalt der blauen geometrischen Figur ist?

Brüche subtrahieren Eine geometrische Figur innerhalb eines Rechtecks StudySmarterAbbildung 1: Eine geometrische Figur innerhalb eines Rechtecks

Richtig; wir wissen es auch nicht. Lass es uns also gemeinsam herausfinden. Auf dem Weg dahin wirst Du insbesondere die Subtraktion von Brüchen kennenlernen. Aber nicht nur die Subtraktion: In dieser unscheinbaren Aufgabe steckt ein großer Teil der Bruchrechnung.

Das klingt so, als wüssten wir, was der Flächeninhalt ist. Das ist nicht der Fall. Zu wissen, wie der Flächeninhalt bestimmt werden kann, ist das eine. Den konkreten Wert zu kennen, ist etwas anderes.

Der Artikel zur Bruchrechnung gibt Dir einen Überblick darüber, welche Operationen es mit Brüchen gibt. Zu jeden dieser Operationen gibt es weitere Artikel, in denen Du nicht nur Erklärungen findest, sondern viele Beispiele.

Addition von Brüchen - eine kurze Wiederholung

Die Subtraktion von Brüchen hat große Ähnlichkeiten zur Addition von Brüchen. Der einzige Unterschied ist das Aufkommen von Minuszeichen.

Schauen wir uns also kurz an, wie Du zwei Brüche addierst. Die allgemeine Vorgehensweise ist dabei die folgende:

  • Zunächst bringst Du die Brüche auf einen gemeinsamen Nenner, sodass Du nun Brüche vor Dir hast, die denselben Nenner besitzen. Das erreichst Du, indem Du die Brüche erweiterst.

  • Anschließend addierst Du die Zähler der Brüche und lässt den Nenner unberührt.

Zwei konkrete Brüche addieren

Betrachte die beiden Brüche

und

In dieser Form kannst Du die Brüche nicht addieren, denn ihre Nenner unterscheiden sich. Du kannst sie aber umschreiben:

für den ersten Bruch und

für den zweiten Bruch.

Jetzt besitzen beide Brüche denselben Nenner und Du brauchst nur noch ihre Zähler zu addieren. Das Ergebnis lautet

Einen Apfel und einen weiteren Apfel kannst Du zu zwei Äpfel zusammenfassen. Hier geschieht genau dasselbe. Nur hast Du als Objekt nicht Äpfel, sondern den Stammbruch (ein Stammbruch ist ein Bruch mit Zähler 1). Zuvor hattest Du die Stammbrüche (multipliziert mit 5) und (multipliziert mit 3). Das sind zwei unterschiedliche Objekte, so wie Äpfel und Birnen zwei unterschiedliche Objekte sind. Aus Stammbrüchen kannst Du aber über das Erweitern dieselben Objekte machen (bei Obst ist das nicht möglich).

Die Subtraktion von Brüchen läuft genauso ab. Statt die Zähler aber zu addieren, werden sie voneinander subtrahiert. Du kannst die Subtraktion sogar wie eine Addition aussehen lassen.

Brüche subtrahieren - fast wie die Addition

Um das zu sehen, gehen wir einen Schritt zurück und schauen uns die Subtraktion von ganzen Zahlen an. Danach wird das auf den Fall von Brüchen übertragen.

Subtraktion ganzer Zahlen - ein etwas anderes Blick auf ein vertrautes Problem

Wir beginnen mit folgender Beobachtung

Die Zahl 5 ist willkürlich. Du kannst hierfür jede beliebige Zahl verwenden. Auf ähnliche Weise kannst Du auch

schreiben. Nun betrachte die Subtraktion

Mit den beiden Beobachtungen kannst Du sie schreiben als

oder, weil hauptsächlich die Minuszeichen von Interesse sind,

Zurecht könntest Du einwerfen, dass dadurch der Ausdruck nur unnötig komplizierter geworden ist. Aber was wurde dadurch erzielt? Die Subtraktion wurde zu einer Addition.

Dennoch hast Du recht: Bei ganzen Zahlen ist das nur Spielerei. Bei Brüchen ist das hingegen sehr nützlich, wie Du gleich sehen wirst.

Subtraktion von Brüchen - eigentlich nichts Neues

Du kannst die beiden ganzen Zahlen 5 und 4 in Stammbrüche umwandeln, indem Du sie als Nenner verwendest. Betrachte also die beiden Stammbrüche

und

Jetzt möchtest Du sie subtrahieren, das heißt, Du interessierst Dich für den Ausdruck:

Mit dem Wissen aus dem vorherigen Abschnitt kannst Du das auch als

schreiben.

Jetzt hast Du eine Addition von zwei Brüchen. Und wie addierst Du zwei Brüche? Indem Du sie auf einen gemeinsamen Nenner bringst und die Zähler addierst. Die Subtraktion von Brüchen ist also nichts Neues.

Zwei konkrete Brüche subtrahieren

Die Beobachtung kann auf allgemeine Brüche erweitert werden. Dazu betrachte die beiden Brüche

und

Den einen Bruch möchtest Du von dem anderen abziehen:

Dazu schreibst Du den Ausdruck zunächst um, damit Du eine Addition stehen hast:

Jetzt gehst Du genauso vor wie bei der Addition von Brüchen. Das heißt, Du erweiterst die Brüche zuerst:

und

Beachte, wie beim Erweitern das Minuszeichen ignoriert wurde. Erst bei der Addition wird das Minuszeichen berücksichtigt:

Wenn Du Dich an diese Denkweise gewöhnt hast, brauchst Du nicht den Zwischenschritt machen, bei dem Du die Subtraktion auf eine Addition zurückführst. Du kannst stattdessen direkt erweitern und subtrahieren. Für das vorherige Beispiel sieht das dann so aus:

Die allgemeine Vorgehensweise ist also die folgende:

  1. Erweitere die beteiligten Brüche so, dass alle Brüche denselben Nenner besitzen.
  2. Bei Pluszeichen addierst Du die Zähler, bei Minuszeichen subtrahierst Du hingegen.
  3. Nachdem Du alle Zähler entsprechend der Vorzeichen korrekt addiert bzw. subtrahiert hast, schreibst Du das Ergebnis als Zähler des neuen Bruches. Der Nenner des neuen Bruches ist der gemeinsame Nenner, den Du durch das Erweitern erhalten hast.

Um Dich an diese Denk- und Vorgehensweise zu gewöhnen, lernst Du im Folgenden mehrere Spezialfälle kennen.

Brüche subtrahieren - ein paar ausführliche Beispiele

Zur Wiederholung: Bei der Subtraktion von Brüchen ignorierst Du zunächst die Minuszeichen; siehst also das Problem als die Addition von Brüchen. Nachdem Du dann alles korrekt erweitert hast, blendest Du die Minuszeichen wieder ein, indem Du an den passenden Stellen subtrahierst (statt zu addieren).

Eine Kombination aus Subtraktion und Addition

Betrachte die drei Brüche

und

Diese drei Brüche möchtest Du folgendermaßen kombinieren:

Zunächst blendest Du das Minuszeichen aus und erweiterst die Brüche so, dass Du auf einen gemeinsamen Nenner kommst. Ein solcher gemeinsamer Nenner ist die Zahl 30. Durch das Erweitern erhältst Du die drei Brüche:

und

Jetzt blendest Du das Minuszeichen wieder ein. Das Ergebnis lautet dann:

Manchmal sind die Brüche auch etwas "netter" und schonen Dich vor dem Erweitern.

Gleichnamige Brüche subtrahieren

Diese "netteren" Brüche sind Brüche, die bereits denselben Nenner haben, also gleichnamig sind. Du kannst sie daher direkt subtrahieren, ohne vorher erweitern zu müssen.

Kuchen am Morgen vertreibt Kummer und Sorgen

Du hast eine wunderbar riechende Erdbeertorte mit einem Rand aus zarter Vollmilchschokolade, die Du in sechs Stücke aufgeteilt hast (siehe linken Teil der Abbildung 2).

Nun isst Du zwei Stücke. Wie viel bleibt vom Kuchen insgesamt übrig?

Brüche subtrahieren Kuchendiagramm zur Anschauung der Subtraktion von Brüchen StudySmarter Abbildung 2: Torte

Du kannst die Frage auf zwei unterschiedlichen Wegen beantworten. Beim ersten Weg beobachtest Du, dass jedes Stück ein Sechstel der gesamten Torte darstellt. Nach deinem Verzehr von zwei Stück hast Du nur noch vier Stücke übrig. Das sind insgesamt vier Sechstel der gesamten Torte.

Für den zweiten Weg beginnst Du mit der Beobachtung, dass

gilt. Von diesen sechs Sechstel ziehst Du zwei Sechstel ab. Du rechnest also

und weil die Brüche gleichnamig sind, kannst Du direkt subtrahieren:

Die Gleichheit

ist eine Möglichkeit, aus einer ganzen Zahl einen Bruch zu machen. Die Methode funktioniert aber nur für die ganze Zahl 1 (und für -1 mit entsprechendem Vorzeichen).

Ganze Zahlen von Brüchen subtrahieren

Du kannst aber jede ganze Zahl als Bruch auffassen, indem Du die ganze Zahl als Zähler eines Bruches mit Nenner 1 verwendest.

Ganze Zahl als Bruch

Eine ganze Zahl x kannst Du im Allgemeinen als Bruch

Brüche subtrahieren ganze Zahl als Bruch StudySmarter

schreiben.

Nun hast Du wieder Brüche und kannst vorgehen wie bisher.

Subtraktion zwischen einem Bruch und einer ganzen Zahl

Du hast den Bruch

gegeben und möchtest von ihm die ganze Zahl 3 abziehen.

Hierzu schreibst Du zunächst die ganze Zahl als Bruch:

Der Ausdruck von Interesse ist dann:

Das ist eine Subtraktion von zwei Brüchen. Das heißt, Du bringst zunächst die Brüche auf einen gemeinsamen Nenner, dann subtrahierst Du:

Hier ein kleiner Tipp: Wenn Du eine Addition oder eine Subtraktion gegeben hast, bei der eine Zahl ein Bruch ist und die andere Zahl eine ganze Zahl, so ist der Nenner des Bruches immer ein gemeinsamer Nenner.

Die Ergebnisse und beteiligten Brüchen waren bisher alle positiv. Das muss aber nicht immer der Fall sein.

Negative Brüche subtrahieren

Dazu brauchst Du die Merkhilfe: "Minus Mal Minus ist Plus".

Im Artikel zur Multiplikation von Brüchen findest Du eine geometrische Erklärung dieser Merkhilfe. Schaue also dort vorbei, wenn Dir die diese Regel noch nicht bekannt ist.

Die Vorgehensweise ist grundsätzlich gleich wie bei der Subtraktion positiver Brüche.

Wenn die Minuszeichen verschwinden

Du hast die beiden Brüche

und

Du möchtest von abziehen:

Das kannst Du umschreiben zu:

Das ist eine Addition von Brüchen. Die Minuszeichen verschwinden also. Als Ergebnis erhältst Du dann:

Wenn die Minuszeichen nicht verschwinden

Du hast dieselben Brüche, aber diesmal drehst Du die Reihenfolge um. Du hast also den Ausdruck:

Zunächst ignorierst Du die Minuszeichen und erweiterst die Brüche. Vom vorherigen Beispiel weißt Du, dass 63 ein gemeinsamer Nenner ist. Die erweiterten Brüche sind also:

und

Jetzt blendest Du die Minuszeichen wieder ein:

Hier ein kurzer Hinweis: Du hast die Reihenfolge vertauscht und ein anderes Ergebnis erhalten. Die Subtraktion von Brüchen (und die Subtraktion allgemein) ist nicht kommutativ. Die Addition hingegen ist kommutativ; Du kannst also ohne Bedenken die Reihenfolge vertauschen.

Gemischte Brüche subtrahieren

Ein weiterer Spezialfall sind gemischte Brüche. Das ist aber ebenso leicht geregelt, denn Du kannst gemischte Brüche in "normale" Brüche umwandeln. Nachdem Du das getan hast, kannst Du wie gewohnt subtrahieren.

Zwei gemischte Brüche subtrahieren

Du möchtest vom gemischten Bruch

den gemischten Bruch

abziehen. Im ersten Schritt wandelst Du die beiden gemischten Brüche in "normale" Brüche um:

und

Da Du nun zwei "normale" Brüche hast, kannst Du sie wie bisher subtrahieren. Das heißt, zunächst bringst Du sie auf einen gemeinsamen Nenner:

und

Anschließend subtrahierst Du die Zähler und lässt die Nenner unberührt:

Brüche mit Variablen subtrahieren - ein Einblick in Bruchterme

Die bisherigen Brüche bestanden stets aus konkreten Zahlen. Du kannst aber zusätzlich zu konkreten Zahlen auch Variablen verwenden. Ein Beispiel dafür ist der Ausdruck

Wie ist dieser Ausdruck zu verstehen? Er ist nach wie vor ein Bruch; nur etwas flexibler. Dieser Bruch stellt nämlich gleichzeitig alle Brüche dar, die im Nenner eine Vier haben, wie

oder

Alles, was Du dafür machen musst, ist die entsprechende Zahl in die Variable x einzusetzen. Da diese Art von Bruch viele Brüche gleichzeitig darstellt, bekommt sie einen anderen Namen.

Bruchterme

Bruchterme sind Brüche, bei denen sowohl im Zähler als auch im Nenner neben konkreten Zahlen ebenfalls Variablen auftauchen können.

Bruchterme sind also "flexible" Brüche. Du kannst daher mit ihnen umgehen, wie mit Brüchen. Das gilt insbesondere für die Subtraktion.

Ein entscheidender Unterschied tritt im Fall auf, dass sich die Variable (oder Variablen) im Nenner befinden. Dann kann es sein, dass Du eine Zahl einsetzt, die den Nenner zu Null werden lässt. Das ist problematisch, denn die Division durch Null ist auch bei Bruchterme nicht wohl definiert. Um das zu vermeiden, musst Du bei Bruchterme sogenannte Definitionsmengen angeben. Die Details dazu findest Du in unserem Artikel zu Bruchterme.

Zwei Brüche mit Variablen subtrahieren, wobei die Nenner "direkt" erweitert werden

Betrachte die beiden Brüche

und

Beides sind Beispiele für Bruchterme, denn im ersten Bruch hast Du die Variable x, im zweiten Bruch die Variable y.

Um auf den vorherigen Hinweis zurückzugreifen: Beim ersten Bruch musst Du aufpassen, dass x nicht gleich Null ist. Beim zweiten Bruch hingegen kannst Du für y alle Zahlen verwenden, denn der Nenner wird für keine ganze oder rationale Zahl gleich Null.

Du kannst diese beiden Brüche auf einen gemeinsamen Nenner bringen, indem Du den einen Bruch jeweils mit dem Nenner des anderen Bruches erweiterst. Konkret erhältst Du hier:

und

Jetzt besitzen die Brüche denselben Nenner und Du kannst zum Beispiel den zweiten Bruch vom ersten Bruch subtrahieren:

Zwei Brüche mit Variablen subtrahieren, wobei die Nenner "geschickt" erweitert werden

Manchmal kannst Du die Nenner auch "geschickter" erweitern. Bei den zwei Brüchen

und

könntest Du wie vorhin "direkt" loslegen. Wenn Du aber die erste binomische Formel beherrscht, fällt Dir auf, dass Du den zweiten Bruch auch umschreiben kannst:

Du hast also jetzt die beiden Brüche:

und

In dieser Form fällt Dir vielleicht auf, dass sich die beiden Nenner um den Faktor unterscheiden. Du brauchst also nur den linken Bruch um diesen Faktor zu erweitern:

Ziehst Du dann den zweiten Bruch vom ersten Bruch ab, so bekommst Du:

Solche "geschicktere" Erweiterungen findest Du mit Übung immer schneller. In unserem Artikel Bruchterme gibt es viele weitere Tricks und Beispiele.

Über Brüche zum Flächeninhalt

Nun kann der Flächeninhalt der geometrischen Figur zu Beginn dieses Artikels errechnet werden. Es gibt mehrere Methoden dafür. Wir entscheiden uns aber für eine Methode, bei der die Subtraktion von Brüchen eine zentrale Rolle spielt.

Bei dieser Methode gehst Du folgendermaßen vor: Zunächst berechnest Du den Flächeninhalt des "äußeren" Rechtecks. Von diesem Flächeninhalt ziehst Du dann die Flächeninhalte der "inneren" weißen geometrischen Figuren ab. Am Ende hast Du dann den Flächeninhalt der blauen geometrischen Figur.

Um konkret zu werden, betrachte Abbildung 3. Das ist dieselbe Abbildung wie am Anfang, nur mit zusätzlicher Beschriftung. Das "äußere" Rechteck hat die Maße 1 und . Sein Flächeninhalt beträgt damit

Bei den "inneren" geometrischen Figuren , und handelt es sich um Dreiecke. Für ihre Flächeninhalte erhältst Du daher:

und

Brüche subtrahieren Flächeninhalt mit Hilfe der Subtraktion von Brüchen bestimmen StudySmarterAbbildung 3: Bestimmung des Flächeninhalts der blauen geometrischen Figur durch Subtraktion von Brüchen.

Die "innere" geometrische Figur ist ein weiteres Rechteck. Sein Flächeninhalt ist

Damit hast Du alles zusammen und kannst den Flächeninhalt der blauen geometrischen Figur berechnen:

Der gemeinsame Nenner dieser fünf Brüche ist die Zahl 32. Nach dem Erweitern bekommst Du

Da gilt, kannst Du sogar noch einen Faktor von 8 kürzen. Am Ende ist das Ergebnis

Der Flächeninhalt der blauen geometrischen Figur ist also gerade die Hälfte des Flächeninhalts des "äußeren" Rechtecks.

In dieser einen Aufgabenstellung steckte die Addition, Subtraktion, das Kürzen und das Erweitern von Brüchen. Wir sind hier bei der Subtraktion von Brüchen. Wie wäre es also mit ein paar Aufgaben dazu?

Brüche subtrahieren - Aufgaben

Nehme Dir bei den Aufgaben die Zeit, die Du brauchst. Versuche, die einzelnen Schritte zu verstehen.

Aufgabe 1 - Zwei Brüche subtrahieren

Berechne die folgende Subtraktion

und vereinfache so weit wie möglich.

Lösung

Du könntest direkt loslegen und die Nenner erweitern. Jedoch kannst Du den ersten Bruch kürzen, denn:

Die Subtraktion lautet damit:

Ein gemeinsamer Nenner ist hier die Zahl 21. Erweiterst Du die Brüche und subtrahierst dann, so bekommst Du:

Hier kannst Du nicht weiter vereinfachen.

Aufgabe 2 - Ganze Zahl von Bruch subtrahieren

Subtrahiere vom Bruch

die ganze Zahl

und vereinfache das Ergebnis soweit wie möglich

Lösung

Eine Möglichkeit ist es, "direkt" loszulegen. Hier rechnest Du:

Alternativ kannst Du den Bruch

zunächst kürzen:

Dann subtrahierst Du von dem gekürzten Bruch die ganze Zahl:

Das Ergebnis ist in beiden Fällen dasselbe; so wie es auch sein muss.

Aufgabe 3 - Brüche mit Variablen subtrahieren

Berechne für die Brüche

und

die folgende Subtraktion:

Vereinfache das Ergebnis so weit wie möglich.

Zusatzaufgabe (diese Aufgabe ist optional): Bestimme sowohl für die beiden Brüche als auch für das Ergebnis der Subtraktion welche Zahlen Du für die Variable x verwenden darfst. (Hinweis: Betrachte jeweils die Nenner und stelle fest, für welche Werte von x dieser gleich Null wird.)

Lösung

Du könntest die Brüche direkt mit dem Nenner des jeweils anderen Bruchs erweitern. Den zweiten Bruch

kannst Du jedoch umschreiben, indem Du die dritte binomische Formel für den Nenner verwendest:

Jetzt hast Du die beiden Brüche

und ,

deren Nenner sich nur um den Faktor unterscheiden. Erweiterst Du den ersten Bruch mit diesem Faktor, so erhältst Du:

Nun besitzen die beiden Brüche denselben Nenner und Du kannst subtrahieren:

Lösung zur Zusatzaufgabe

Um zu bestimmen, welche Zahlen Du in die Brüche einsetzen darfst, nimmst Du jeweils den Nenner und suchst nach seine Nullstellen.

Die Nullstellen des Nenners sind gerade die Zahlen, die durch Einsetzen den Nenner Null werden lassen.

Beim ersten Bruch

ist der Nenner . Um die Nullstellen davon zu finden, löst Du die Gleichung

Die Gleichung wird für erfüllt. Also hat der Nenner die Nullstelle . In diesem Bruch darfst Du daher alle Zahlen einsetzen, außer die Zahl 4.

Der zweite Bruch

hat den Nenner . Die Nullstellen hiervon sind

und .

Ein Produkt von Zahlen ist genau dann Null, wenn einer der Faktoren Null ist. Diese Beobachtung wird oft als Satz vom Nullprodukt bezeichnet. Beim Produkt hast Du die beiden Faktoren und . Der erste Faktor nimmt für und der zweite für den Wert Null an.

Du darfst also in den zweiten Bruch die Zahlen -4 und 4 nicht einsetzen.

Schließlich hast Du noch das Ergebnis der Subtraktion:

Der Nenner ist hier und hat die Nullstelle . In die Differenz der beiden Brüche darfst Du somit alle Zahlen einsetzen, außer die Zahl -4.

Brüche subtrahieren - Das Wichtigste

  • Bei der Subtraktion von Brüchen gehst Du genauso vor wie bei der Addition von Brüchen: Du bringst zunächst alle Brüche auf denselben Nenner und führst anschließend die Subtraktion durch.
  • Bei der eigentlichen Ausführung der Subtraktion konzentrierst Du Dich nur auf die Zähler. Der gemeinsame Nenner der Brüche bleibt dabei unberührt.
  • Da die Subtraktion im Wesentlichen eine "versteckte" Addition ist, hast Du auch hier dieselben Spezialfälle. Unter anderem hast Du:
    • Ganze Zahlen von Brüche subtrahieren: Hier schreibst Du die ganze Zahl als Bruch und gehst wie gewohnt vor.
    • Negative Brüche subtrahieren: Hier achtest Du vorwiegend auf diejenigen Fälle, bei denen zwei (oder mehr) Minuszeichen aufeinandertreffen. Dabei verwendest Du die Merkhilfe "Minus Mal Minus ist Plus".
    • Gemischte Brüche subtrahieren: Hier wandelst Du die gemischte Brüche zunächst in "normale" Brüche um.
    • Brüche mit Variablen subtrahieren: Brüche mit Variablen heißen auch Bruchterme. Du rechnest mit ihnen so wie Du mit Brüchen (ohne Variablen) rechnest.
  • Wenn Du eine Mischung aus Addition und Subtraktion hast, dann blendest Du zunächst alle Vorzeichen aus. Dann bringst Du die beteiligten Brüche auf einen gemeinsamen Nenner. Schließlich blendest Du die Vorzeichen wieder ein, indem Du die Zähler entsprechend der Vorzeichen subtrahierst oder addierst.

Häufig gestellte Fragen zum Thema Brüche subtrahieren

Die Vorgehensweise bei der Subtraktion von Brüchen ähnelt der Vorgehensweise bei der Addition. Der einzige Unterschied sind die Minuszeichen. Konkret gehst Du so vor: Du bringst die beteiligten Brüche auf einen gemeinsamen Nenner. Anschließend subtrahierst Du die Zähler (so, wie Du ganze Zahlen subtrahierst). Dabei lässt Du den gemeinsamen Nenner unberührt.

Bei gemischten Brüche brauchst Du noch einen zusätzlichen Zwischenschritt. Bei diesem Zwischenschritt wandelst Du den gemischten Bruch in einen "normalen" Bruch um. Anschließend kannst Du die Brüche subtrahieren.

Um eine ganze Zahl von einem Bruch zu subtrahieren, schreibst Du zunächst die ganze Zahl als ein Bruch. Dafür musst Du nur die ganze Zahl als Zähler eines Bruches mit Nenner 1 verwenden. Nach dieser Umwandlung der ganzen Zahl in einen Bruch hast Du zwei Brüche, die Du dann subtrahieren kannst.

Bei negativen Brüchen musst Du im Wesentlichen auf einen Fall achten: wenn mehrere Minuszeichen direkt aufeinandertreffen. Hier musst Du dann die Merkregel "Minus Mal Minus ist Plus" anwenden. Ansonsten unterscheidet sich die Subtraktion von negativen Brüchen nicht von der Subtraktion von positiven Brüchen.

Finales Brüche subtrahieren Quiz

Frage

Beschreibe in eigenen Worten, wie Du bei der Subtraktion von Brüchen vorgehst.

Antwort anzeigen

Antwort

Bei der Subtraktion von Brüche bringst Du zunächst die beteiligten Brüche auf einen gemeinsamen Nenner. Anschließend subtrahierst Du die Zähler und lässt den gemeinsamen Nenner unberührt.

Frage anzeigen

Frage

Beurteile den Wahrheitsgehalt der folgenden Aussage: Bei der Subtraktion von Brüchen gehst Du genauso vor wie bei der Addition von Brüchen.

Antwort anzeigen

Antwort

Die Aussage ist richtig. So wie bei der Addition von Brüchen, bringst Du auch bei der Subtraktion die beteiligten Brüche auf einen gemeinsamen Nenner. Dann führst Du mit den Zählern die eigentliche Subtraktion aus.

Frage anzeigen

Frage

Auch wenn sich die Subtraktion und Addition von Brüchen kaum unterscheiden, gibt es einen wichtigen Unterschied. Welcher ist das?

Antwort anzeigen

Antwort

Anders als die Addition, ist die Subtraktion von Brüchen nicht kommutativ. Das heißt, die Reihenfolge, in der Du die Brüche subtrahierst, spielt eine Rolle.

Frage anzeigen

Frage

Wie subtrahierst Du im Allgemeinen eine ganze Zahl von einem Bruch?

Antwort anzeigen

Antwort

Zunächst schreibst Du die ganze Zahl als Bruch. Wenn Du das machst, hast Du dann zwei Brüche. Diese beiden Brüche kannst Du dann wie gewohnt subtrahieren.

Frage anzeigen

Frage

Welche Sonderregel ist zu beachten, wenn auch negative Brüche auftauchen?

Antwort anzeigen

Antwort

Allgemein solltest Du die Merkhilfe "Minus Mal Minus ist Plus" verinnerlichen. Das ist insbesondere dann nützlich, wenn mehrere Minuszeichen aufeinandertreffen.

Frage anzeigen

Frage

Wie gehst Du bei der Subtraktion von gemischten Brüchen vor?

Antwort anzeigen

Antwort

Bei der Subtraktion von gemischten Brüchen musst Du einen Zwischenschritt machen, bei dem Du die gemischten Brüche in "normale" Brüche umwandelst. Anschließend kannst Du wie gewohnt subtrahieren.

Frage anzeigen

Frage

Wie werden Brüche mit Variablen auch genannt und was kannst Du mit ihnen machen?

Antwort anzeigen

Antwort

Brüche mit Variablen werden auch als Bruchterme bezeichnet. Du kannst mit ihnen rechnen wie Du mit "gewöhnlichen" Brüchen rechnest.

Frage anzeigen

Frage

Worauf musst Du bei Brüchen mit Variablen achten?

Antwort anzeigen

Antwort

Problematisch können die Fälle sein, bei denen im Nenner Variablen stehen. Dadurch könnte es sein, dass Du für die Variablen Werte einsetzt, die den Nenner Null werden lassen. Die Division durch Null ist aber nicht wohl definiert.

Frage anzeigen

Frage

Welche gängigen Tricks gibt es, die es Dir ermöglichen, Brüche mit Variablen zu vereinfachen?

Antwort anzeigen

Antwort

Zu den gängigsten Tricks zählen unter anderem das Ausklammern von gemeinsamen Faktoren und die Anwendung der binomischen Formeln.

Frage anzeigen
Mehr zum Thema Brüche subtrahieren
60%

der Nutzer schaffen das Brüche subtrahieren Quiz nicht! Kannst du es schaffen?

Quiz starten

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Gerade angemeldet?

Ja
Nein, aber ich werde es gleich tun

Melde dich an für Notizen & Bearbeitung. 100% for free.