Select your language

Suggested languages for you:
Log In Anmelden
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|

Die All-in-one Lernapp:

  • Karteikarten
  • NotizenNotes
  • ErklärungenExplanations
  • Lernpläne
  • Übungen
App nutzen

Punktprobe

Save Speichern
Print Drucken
Edit Bearbeiten
Melde dich an und nutze alle Funktionen. Jetzt anmelden
Mathe

Liegt der Punkt P auf der Funktion f(x)? Das kannst du mithilfe der sogenannten Punktprobe rechnerisch herausfinden. In diesem Artikel findest du alle wichtigen Informationen, die du zur Punktprobe wissen solltest.

Punktprobe Übersicht

Wenn du dir die Grafik einer Funktion ansiehst, dann siehst du sofort, ob ein eingezeichneter Punkt P oder P' auf dem Graphen liegt oder nicht.

Aufgabe 1

Punktprobe, Punkt auf Funktion, StudySmarterAbbildung 1: Liegt der Punkt auf der Funktion?

Lösung

Der Punktliegt auf der Geraden. Der Punktnicht.

Willst du jedoch berechnen, ob ein Punkt auf einer Funktion liegt, dann benötigst du die Punktprobe.

Die Punktprobe zeigt durch Rechnung, ob ein beliebiger PunktElement einer Funktionist oder nicht.

Der Hintergrund der Punktprobe ist, dass die Funktionsgleichung für einen ihr zugehörigen Punkt und dessen x- und y-Werte aufgehen muss.

Andersherum muss bei einem externen Punkt () ein falsches Ergebnis, beim Einsetzen der Zahlenwerte für x und y in die Gleichung, herauskommen.

Ein Punkt ist meist in dieser Form gegeben: .

Zur Erinnerung: Der vordere Wert, die 1, ist die x-Stelle des Punktes. Der hintere Wert, die 3, ist der y-Wert des Punktes.

Um am Ende anzugeben, ob der Punkt P auf der Funktionliegt, verwendet man das "Element von"-Zeichen

() oder das "kein Element von"-Zeichen ():

Beispiel
So sprichst du es
"P ist Element von f(x)"
"P' ist kein Element von f(x)"

Punktprobe Durchführung

Beim Durchführen der Punktprobe gehst du immer nach dem gleichen Schema vor:

Punktprobe

  1. Setze den x- und den y-Wert des Punktes in die Funktionsgleichung ein.

  2. Berechne beide Seiten der Funktionsgleichung mit den eingesetzten Werten.

  3. Geht die Gleichung auf (zum Beispiel⁣), liegt der Punkt auf der Funktion. Ist die Gleichung am Ende falsch (), liegt der Punkt neben der Funktion.

Anhand dieses einfachen Beispiels kannst du sehen, wie das Ganze funktioniert.

Aufgabe 2

Überprüfe, ob der Punktauf der linearen Funktion mit der Gleichungliegt.

Merke dir: f(x) kannst du auch als y schreiben.

Lösung

Du vereinfachst deine Gleichung also sofort, indem du stattein y schreibst. In dieser Form wirst du sie nämlich in der Rechnung benötigen.

Außerdem machst du dir nochmal bewusst, welche Koordinate des Punktes für den x-Wert und den y-Wert stehen.

Nach diesen Vorüberlegungen startest du mit der Punktprobe:

Schritt 1:

Setze den x- und den y-Wert des Punktes in die Funktionsgleichung ein.

Für y setzt du die 4 ein, den y-Wert des Punktes P. Das x aus der Gleichung wird durch 2 ersetzt.

Schritt 2:

Berechne beide Seiten der Funktionsgleichung mit den eingesetzten Werten.

Auf der linken Seite gibt es nichts mehr zu rechnen, hier steht eine 4. Rechts musst du den Term noch berechnen, doch auch hier ergibt sich eine 4.

Schritt 3:

Geht die Gleichung auf (zum Beispiel 5 = 5), liegt der Punkt auf der Funktion. Ist die Gleichung am Ende falsch,

(), liegt der Punkt neben der Funktion.

Die Gleichung ergibt, das heißt, sie ist korrekt und geht auf. Der Punkt liegt damit also auf der Funktion.

Das gibst du jetzt noch als Antwort in folgender Form wieder:

"P ist Element von f(x)"

Damit hast du deine Punktprobe erfolgreich erledigt.

Punktprobe Punktprobe Beispiel StudySmarterAbbildung 2: Punktprobe Beispiel 1

Aufgabe 3

Berechne, ob der Punktauf dem Graphen der Funktionliegt.

Lösung

Vorüberlegungen

Um dir die Punktprobe zu vereinfachen, schreibst du die Funktion schon einmal in der richtigen Form auf und überlegst dir, wie der Punkt dargestellt ist.

1. Schritt:

Setze den x- und den y-Wert des Punktes in die Funktionsgleichung ein.

Setze die gegebenen Werte statt x und y in die Gleichung ein.

2. Schritt:

Berechne beide Seiten der Funktionsgleichung mit den eingesetzten Werten.

Auf der linken Seite ist wieder nichts zu tun. Die rechte Seite berechnest du nach den bekannten Rechenregeln.

3. Schritt:

Geht die Gleichung auf (zum Beispiel 5 = 5), liegt der Punkt auf der Funktion. Ist die Gleichung am Ende falsch, (⁣), liegt der Punkt neben der Funktion.

Das Ergebnis deiner Rechnungenist falsch. Die Gleichung geht also nicht auf und der Punkt P liegt nicht auf der Funktion, sondern daneben.

Das schreibst du so:

Auch diese Punktprobe wurde erfolgreich durchgeführt.

Punktprobe, Punktprobe Beispiel, StudySmarterAbbildung 3: Punktprobe Beispiel 2

Punktprobe verschiedener Funktionstypen

Grundsätzlich läuft die Punktprobe immer gleich ab. In der folgenden Tabelle kannst du dir dennoch Beispiele für jeden einzelnen Funktionstyp ansehen.

Funktionstyp Berechnung Punktprobe
Aufgabe:Liegt der Punkt P (4|4) auf der Funktion ?1. Schritt: x- und y-Wert in Funktionsgleichung einsetzen.
2. Schritt: Berechne beide Seiten der Funktionsgleichung.
3. Schritt: Ergebnis auswerten.

Punktprobe, Punktprobe Lineare Funktion, StudySmarterAbbildung 4: Punktprobe Lineare Funktion

Quadratische Funktionen
Aufgabe:Ist der Punkt R (3|2) ein Teil des Graphen der Funktion?1. Schritt:
2. Schritt:
3. Schritt:

Punktprobe, Punktprobe quadratische Funktion, StudySmarter Abbildung 5: Punktprobe Quadratische Funktion

sonstige Ganzrationale Funktionen
Aufgabe:Die Funktion ist gegeben. Liegt der Punkt S (2|3) auf dem Funktionsgraphen?1. Schritt:
2. Schritt:
3. Schritt:

Punktprobe, Punktprobe ganzrationale Funktion, StudySmarterAbbildung 6: Punktprobe Ganzrationale Funktion

Aufgabe:Liegt der Punkt L (-2|2) auf der Funktion?1. Schritt:
2. Schritt:
3. Schritt:

Punktprobe, Punktprobe natürliche e-Funktion, StudySmarterAbbildung 7: Punktprobe Natürliche e-Funktion

Natürliche Logarithmusfunktion

Aufgabe:

Der Punkt Z (3|5) liegt auf der Funktion. Stimmt diese Aussage?

1. Schritt:

2. Schritt:

3. Schritt:

Die Aussage ist also falsch.

Punktprobe, Punktprobe Natürliche Logarithmus Funktion, StudySmarter Abbildung 8: Punktprobe Natürliche Logarithmusfunktion

Aufgabe:Ist der Punkt T (3|2) Teil des Funktionsgraphen der Funktion?Schritt 1:
Schritt 2:
Schritt 3:

Punktprobe, Wurzelfunktion, StudySmarter Abbildung 9: Punktprobe Wurzelfunktion

Aufgabe:Gehört der Punkt Ozur Funktion?1. Schritt:
2. Schritt:
3. Schritt:

Punktprobe, Sinusfunktion, StudySmarterAbbildung 10: Punktprobe Sinusfunktion

Punktprobe – Fehlende Koordinate eines Punktes berechnen

Die Punktprobe kannst du nun, es gibt jedoch in diesem Zusammenhang noch mehr unterschiedliche Formen von Aufgaben.

Ein weiterer Aufgabentyp, der dir auch immer wieder begegnen wird, ist die Berechnung der fehlenden Koordinate eines Punktes.

Das heißt, du hast nur eine Koordinate (zum Beispiel die x-Koordinate) eines Punktes und eine Funktion gegeben. Die andere Koordinate (beispielsweise die y-Koordinate) musst du erst noch berechnen, damit der Punkt auf der gegebenen Funktion liegt.

Du gehst hier nach folgendem Schema vor:

  1. Du setzt die gegebene Variable des Punktes in die Funktionsgleichung ein.

  2. Danach löst du die Gleichung nach der gesuchten Koordinate des Punktes auf.

Diese zwei Beispiele veranschaulichen dir, wie es geht.

y-Koordinate gesucht

Aufgabe 4

Welche y-Koordinate muss der Punkthaben, damit der Punkt P auf der Funktionliegt?

Lösung

1. Schritt:

Genau wie bei der Punktprobe setzt du den Punkt P in die Funktionein, er soll ja auf der Funktion liegen. Da du ja nicht den gesamten Punkt kennst, setzt du nur das dir Bekannte ein, in diesem Fall den x-Wert. Der y-Wert bleibt frei und somit bleibt ein y in der Gleichung stehen.

2. Schritt:

Nachdem jetzt noch eine Unbekannte in dem Term ist, behandelst du ihn jetzt als ganz normale Gleichung und bestimmst eine Lösung für y, und damit auch für die y-Koordinate.

3. Schritt: Lösung

Die y-Koordinate des Punktes P ist 2. Damit liegt der Punktauf der Funktion.

Punktprobe, Fehlende y-Koordinate berechnen, StudySmarter Abbildung 11: fehlende y-Koordinate berechnen

x-Koordinate gesucht

Aufgabe 5

Welche x-Koordinate muss der Punkthaben, damit Q auf der Funktionliegt?

Lösung

1. Schritt:

Du setzt den Punkt Q in die Funktion ein. In diesem Fall hast du nur den y-Wert des Punktes gegeben, ihn setzt du ein. Da du den x-Wert nicht weißt, bleibt er frei.

2. Schritt:

Mithilfe von Äquivalenzumformungen löst du die Gleichung nach der enthaltenen Variable (x) auf.

3. Schritt:

Für die x-Koordinaten 3 und -3 liegt der Punkt Q auf der Funktion. Damit liegen die gesuchten Punkte auf dem Funktionsgraphen von.

Punktprobe, fehlende x-Koordinate berechnen, StudySmarter Abbildung 13: fehlende x-Koordinate berechnen

Punktprobe Vektoren

Um diese Aufgaben lösen zu können, solltest du alles zu den Vektoren, Gesetze zur Vektorrechnung, Vektoren im dreidimensionalen Koordinatensystem usw. wissen. Sieh dir dazu am besten noch einmal die jeweiligen Artikel an.

Diese Punktprobe läuft ein wenig anders ab: Hier ist ebenfalls eine Gerade in Parameterform (siehe Artikel) gegeben und du hast das Ziel, herauszufinden, ob ein Punkt auf ihr liegt. Allerdings ist der Ablauf der Punktprobe ein wenig anders.

Punktprobe Vektoren

  1. Setze den Punkt P als Vektor in die Geradengleichung ein (anstatt ).
  2. Stelle das Gleichungssystem auf, indem du für jede Zeile der Rechnung eine eigene Gleichung bildest.
  3. Berechne für jede der Gleichungen den Wert von t.
  4. Ist t in allen Gleichungen identisch, liegt der Punkt auf der Geraden. Gibt es einen Unterschied zwischen den t-Werten der Gleichungen, so ist der Punkt kein Teil der Geraden.

Parameterform Gerade:

Punktprobe Ebene

Diese Punktprobe ist etwas anders, denn du musst ein Gleichungssystem mit zwei Gleichungen aufstellen und lösen.

Aufgabe 6

Du hast die Geradengleichung in Parameterform vor dir:

Liegt der Punktauf der Geraden?

Lösung

1. Schritt:

Setze den Punkt P als Vektor in die Geradengleichung ein (anstatt ).

2. Schritt:

Stelle das Gleichungssystem auf, indem du für jede Zeile der Rechnung eine eigene Gleichung bildest.

3. Schritt:

Berechne für jede der Gleichungen den Wert von .

4. Schritt:

nimmt in den beiden Gleichungen einen unterschiedlichen Wert an. Damit liegt der Punkt P nicht auf der Geraden.

Aufgabe 7

Gegeben ist die Gleichung einer Geraden in der Ebene:

Liegt der Punktdarauf?

Lösung

1. Schritt: Punkt Q (als Vektor) statt in die Geradengleichung einsetzen.

2. Schritt: Gleichungssystem aufstellen.

3. Schritt: Gleichungen lösen (für ).

4. Schritt: Lösung angeben.

Da die Werte für beide gleich sind, liegt der Punkt Q auf der Gerade.

Punktprobe im Raum

Im Raum musst du sogar ein Gleichungssystem mit drei Gleichungen aufstellen, um die Punktprobe durchzuführen. Du kannst im Dreidimensionalen diesmal nicht nur überprüfen, ob der Punkt auf einer Geraden liegt, sondern auch, ob der Punkt Teil einer Ebene ist.

So überprüfst du (genauso wie bei der Punktprobe im Zweidimensionalen), ob der Punkt auf oder neben einer Geraden liegt:

Aufgabe 8

Diese Gerade liegt im Raum:

Liegt der Punktauf der Geraden h?

Lösung

1. Schritt: Punkt R (als Vektor) statt in die Geradengleichung von h einsetzen.

2. Schritt: Gleichungssystem aufstellen.

3. Schritt: Gleichungen lösen (für ).

4. Schritt: Lösung angeben.

hat für alle Gleichungen dieselbe Lösung, deswegen liegt der Punkt R auf der Geraden.

Aufgabe 9

Gegeben ist die Parameterform der Geraden:

Ist der Punktein Teil der Gerade?

Lösung

1. Schritt: Punkt S (als Vektor) statt in die Geradengleichung einsetzen.

2. Schritt: Gleichungssystem aufstellen.

3. Schritt: Gleichungen lösen (für ).

4. Schritt: Lösung angeben.

Nicht alle -Werte sind gleich. Der Punkt liegt also nicht auf der Geraden.

Um zu testen, ob ein Punkt Teil einer Ebene ist, setzt du ihn in die Ebenengleichung ein. Das funktioniert wie folgt:

Aufgabe 10

Du benötigst die Ebenengleichung in der Koordinatenform (), mit dieser Form geht die Rechnung am einfachsten.

Zur Wiederholung der Koordinatenform und wie du diese durch Umwandlung bekommen kannst, liest du dir am besten noch einmal den dazugehörigen Artikel durch.

Gegeben ist die Koordinatenform der Ebene E:

Sollte eine andere Form, zum Beispiel Parameterform oder Normalform, gegeben sein, musst du diese in die Koordinatenform umwandeln.

Liegt der Punktauf der Ebene?

Lösung

1. Schritt: Setze statt x, y und z die jeweiligen Werte des Punktes P in die Ebenengleichung ein.

2. Schritt: Vereinfache die Gleichung.

3. Schritt: Lösung angeben.

Die Gleichung geht auf, sie ist richtig. Das bedeutet der Punkt P liegt auf der Ebene E.

Punktprobe - Das Wichtigste

  • Die Punktprobe ergibt durch Rechnung, ob ein beliebiger PunktElement einer Funktion ist oder nicht.

  • Durchführung der Punktprobe

    1. Setze den x- und den y-Wert des Punktes in die Funktionsgleichung ein.
    2. Berechne beide Seiten der Funktionsgleichung mit den eingesetzten Werten.
    3. Geht die Gleichung auf (zum Beispiel 5 = 5), liegt der Punkt auf der Funktion. Ist die Gleichung am Ende falsch (), liegt der Punkt neben der Funktion.
  • Die Punktprobe kannst du bei allen Funktionstypen durchführen.
  • Spezialfall: Fehlende Koordinate eines Punktes berechnen:
    1. Du setzt die gegebene Variable des Punktes in die Funktionsgleichung ein.
    2. Danach löst du die Gleichung nach der gesuchten Koordinate des Punktes auf.
  • Du kannst die Punktprobe auch in der Vektorrechnung durchführen. Dazu muss die Geradengleichung (Raum oder Ebene) in der Parameterform vorliegen.
  • Du gehst folgendermaßen vor:
    1. Setze den Punkt P als Vektor in die Geradengleichung ein (anstatt).

    2. Stelle das Gleichungssystem auf, indem du für jede Zeile der Rechnung eine eigene Gleichung bildest.

    3. Berechne für jede der Gleichungen den Wert von t.

    4. Ist t in allen Gleichungen identisch, liegt der Punkt auf der Geraden. Gibt es einen Unterschied zwischen den t-Werten der Gleichungen, so ist der Punkt kein Teil der Geraden.

Punktprobe

Bei der Punktprobe setzt du die x- und y-Koordinate eines Punktes P(x|y) in die Funktion ein.

Anschließend berechnest du die Funktionsgleichung.

Geht die Rechnung auf, liegt der Punkt auf dem Funktionsgraphen. Ist die Rechnung falsch, ist der Punkt kein Teil des Funktionsgraphen.

Die Punktprobe zeigt durch Rechnung, ob ein beliebiger Punkt P(x|y) Element einer Funktion f(x) ist oder nicht.

Um zu überprüfen, ob der Punkt P(x|y) oberhalb, unterhalb oder auf einer Gerade liegt, setzt du seinen x-Wert in die Funktion ein und berechnest den y-Wert.

  • Kommt für y ein Wert größer als der y-Wert des Punktes heraus, liegt der Punkt oberhalb der Gerade.
  • Ist der y-Wert gleich dem des Punktes, liegt der Punkt auf der Gerade. 
  • Ist der berechnete y-Wert kleiner als der des Punktes, liegt er unterhalb der Gerade.

Bei der Punktprobe setzt du die x- und y-Koordinate eines Punktes P(x|y) in die Funktion der Geraden ein. 

Anschließend berechnest du die Funktionsgleichung.

Geht die Rechnung auf, liegt der Punkt auf dem Funktionsgraphen. Ist die Rechnung falsch, ist der Punkt kein Teil des Funktionsgraphen.

60%

der Nutzer schaffen das Punktprobe Quiz nicht! Kannst du es schaffen?

Quiz starten

Finde passende Lernmaterialien für deine Fächer

Alles was du für deinen Lernerfolg brauchst - in einer App!

Lernplan

Sei rechtzeitig vorbereitet für deine Prüfungen.

Quizzes

Teste dein Wissen mit spielerischen Quizzes.

Karteikarten

Erstelle und finde Karteikarten in Rekordzeit.

Notizen

Erstelle die schönsten Notizen schneller als je zuvor.

Lern-Sets

Hab all deine Lermaterialien an einem Ort.

Dokumente

Lade unzählige Dokumente hoch und habe sie immer dabei.

Lern Statistiken

Kenne deine Schwächen und Stärken.

Wöchentliche

Ziele Setze dir individuelle Ziele und sammle Punkte.

Smart Reminders

Nie wieder prokrastinieren mit unseren Lernerinnerungen.

Trophäen

Sammle Punkte und erreiche neue Levels beim Lernen.

Magic Marker

Lass dir Karteikarten automatisch erstellen.

Smartes Formatieren

Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.

Melde dich an für Notizen & Bearbeitung. 100% for free.