StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
Americas
Europe
In diesem Artikel erklären wir dir die partielle Ableitung. Für die partielle Ableitung gelten alle allgemeinen Ableitungsregeln. Am besten schaust du dir den Artikel zu den Ableitungsregeln an, um die partielle Ableitung besser zu verstehen. Die partielle Ableitung ist ein Unterthema der Ableitungsregeln und gehört zum Fach Mathe. Aus dem Artikel zu den Ableitungsregeln wissen wir schon, wie das Ableiten im…
Entdecke über 200 Millionen kostenlose Materialien in unserer App
Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenIn diesem Artikel erklären wir dir die partielle Ableitung. Für die partielle Ableitung gelten alle allgemeinen Ableitungsregeln. Am besten schaust du dir den Artikel zu den Ableitungsregeln an, um die partielle Ableitung besser zu verstehen. Die partielle Ableitung ist ein Unterthema der Ableitungsregeln und gehört zum Fach Mathe.
Aus dem Artikel zu den Ableitungsregeln wissen wir schon, wie das Ableiten im Allgemeinen funktioniert. Wenn du das nochmal wiederholen willst, klicke einfach auf den Begriff und du gelangst direkt zum Artikel. Nun lernen wir die partielle Ableitung kennen.
Hat eine Funktion mehrere Variablen und wird aber nur nach einer der Variablen abgeleitet, so spricht man von einer partiellen Ableitung. Es wird also nur ein Teil – oder ein Part – der Funktion abgeleitet. Daher kommt auch die Bezeichnung der partiellen Ableitung.
Wir betrachten die Funktion:
Sie hat zwei Variablen: x und y. Man kann nun die Funktion entweder nach x oder nach y ableiten. Die jeweils andere Variable, die nicht abgeleitet wird, verhält sich dabei wie eine Konstante. Zur Erinnerung: Die Ableitung einer Konstanten ist null.
Wir leiten nun also zum Beispiel nach x ab. Die Variable y kannst du dir jetzt als Konstante vorstellen, die zum Beispiel dem Wert 3 entspricht. Somit lautet die Funktion nun . Diese Funktion kann ganz normal nach den Ableitungsregeln abgeleitet werden. Die abgeleitete Funktion ist
.
Man kann nun auch x als Konstante setzten und y ableiten. Das Verfahren funktioniert dann genauso.
Wir denken uns: . Die Ableitung ist dann:
Die Vorstellung, dass die Variablen als Konstante bestimmten Werten entsprechen, ist natürlich nur eine Denkhilfe. Du kannst die Funktionen auch direkt ableiten, ohne dir vorher einen Wert auszudenken. Die Hauptsache ist, dass du eine Variable als Konstante behandelst.
Bei der partiellen Ableitung müssen alle allgemeinen Ableitungsregeln beachtet werden. Es gilt also unter anderem die Summenregel, die Quotientenregel, die Produktregel sowie die Kettenregel.
Das obige Beispiel für eine partielle Ableitung war eine partielle Ableitung erster Ordnung. Im Zusammenhang mit partiellen Ableitungen spricht man nämlich von der Ableitung 1. Ordnung, wenn nur einmal abgeleitet wurde. Falls die Funktion zweimal abgeleitet wurde, spricht man von einer Ableitung 2. Ordnung. Eine Ableitung 3. Ordnung ist dann eine dreimal abgeleitete Funktion und so weiter.
Für die partielle Ableitung höherer Ordnung gilt demnach das selbe Prinzip. Wird die partielle Ableitung 1. Ordnung nochmal nach x oder nach y abgeleitet, so wird von der partiellen Ableitung 2. Ordnung gesprochen.
Wir schauen uns ein Beispiel an:
Die partiellen Ableitungen 1. Ordnung lauten:
Nun berechnen wir die partiellen Ableitungen 2. Ordnung, indem wir zunächst nochmal nach x ableiten:
Die partiellen Ableitungen 1. Ordnung können aber natürlich auch nochmal nach y abgeleitet werden. Die Ableitungen 2. Ordnung lauten dann:
fyy(x,y)=4 und fyx(x,y)=1
Man kann nun feststellen, dass die Zahl der möglichen Ableitungen schnell immer größer wird. Eine Funktion mit beispielsweise zwei Variablen besitzt also zwei partielle Ableitungen 1. Ordnung, vier partielle Ableitungen 2. Ordnung und acht partielle Ableitungen 3. Ordnung.
Die mathematische Schreibweise für die partielle Ableitung 1. Ordnung sieht so aus für eine Ableitung nach x: und so für eine Ableitung nach y:
Um die partielle Ableitung 2. Ordnung mathematisch zu kennzeichnen, benutzt man folgende Ausdrücke:
Mit höheren Ableitungen wie der partiellen Ableitung 3. oder 4. Ordnung kann diese Schreibweise weitergeführt werden.
Wie möchtest du den Inhalt lernen?
94% der StudySmarter Nutzer erzielen bessere Noten.
Jetzt anmelden94% der StudySmarter Nutzer erzielen bessere Noten.
Jetzt anmeldenWie möchtest du den Inhalt lernen?
Kostenloser mathe Spickzettel
Alles was du zu . wissen musst. Perfekt zusammengefasst, sodass du es dir leicht merken kannst!
Sei rechtzeitig vorbereitet für deine Prüfungen.
Teste dein Wissen mit spielerischen Quizzes.
Erstelle und finde Karteikarten in Rekordzeit.
Erstelle die schönsten Notizen schneller als je zuvor.
Hab all deine Lermaterialien an einem Ort.
Lade unzählige Dokumente hoch und habe sie immer dabei.
Kenne deine Schwächen und Stärken.
Ziele Setze dir individuelle Ziele und sammle Punkte.
Nie wieder prokrastinieren mit unseren Lernerinnerungen.
Sammle Punkte und erreiche neue Levels beim Lernen.
Lass dir Karteikarten automatisch erstellen.
Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.
Melde dich an für Notizen & Bearbeitung. 100% for free.